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I. BASIC AXIOMS AND EXAMPLES

D&F Exercise 0.1.5

Determine whether the following functions f are well defined:

(a) f : Q → Z defined by f(a/b) = a.

(b) f : Q → Q defined by f(a/b) = a2/b2.
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(a) Let f be the function f : Q → Z defined by f(a/b) = a, where a, b ∈ Z. This function is not well
defined. We can show this with an explicit counter example: f(1/2) = 1, but f(2/4) = 2, despite
the fact that 1/2 and 2/4 are equivalent.

(b) Let f be the function f : Q → Q defined by f(a/b) = a2/b2. This function is well defined. To show
this, let a, b, c, d ∈ Z, where b ̸= 0 and d ̸= 0, and such that the two fractions a/b and c/d are
equivalent: a/b = c/d. Then f(a/b) = a2/b2 = (a/b)2 = (c/d)2 = c2/d2 = f(c/d).

D&F Exercise 0.1.7

Let f : A→ B be a surjective map of sets. Prove that the relation

a ∼ b if an only if f(a) = f(b)

is an equivalence relation whose equivalence classes are the fibers of f .

First, we will show that ∼ is an equivalence relation because it satisfies the following three conditions:

• Let a ∈ A. Since f(a) = f(a), then ∼ is reflexive.

• Let a, b ∈ A. Since f(a) = f(b) implies f(b) = f(a), then ∼ is symmetric.

• Let a, b, c ∈ A. Since if f(a) = f(b) and f(b) = f(c) implies f(a) = f(c), then ∼ is transitive.

Second, we will show that the equivalence classes defined by ∼ are the fibers of f . Let a ∈ A. Here, a
belongs to an equivalence class {x ∈ A|x ∼ a} = {x ∈ A|f(x) = f(a)}. Now let f(a) = c. The fiber of f
over c is the set {x ∈ A|f(x) = f(a) = c}, which, by the definition of ∼, is identical to the equivalence
class {x ∈ A|x ∼ a}.

II. PROPERTIES OF THE INTEGERS

D&F Exercise 0.2.1

For each of the following pairs of integers a and b, determine their greatest common divisor, their least common
multiple, and write their greatest common divisor in the form of ax+ by for some integers x and y.

(a) a = 20, b = 13

(b) a = 69, b = 372

(c) a = 792, b = 275

(d) a = 11391, b = 5673

(e) a = 1761, b = 1567

(f) a = 507885, b = 60808

The algorithm shown in Exercise 0.2.9 was used to compute the following:

(a) gcd(20, 13) = 1 = (2)(20) + (-3)(13), lcm(20, 13) = 260

(b) gcd(372, 69) = 3 = (-5)(372) + (27)(69), lcm(372, 69) = 8556

(c) gcd(792, 275) = 11 = (8)(792) + (-23)(275), lcm(792, 275) = 19800

(d) gcd(11391, 5673) = 3 = (-126)(11391) + (253)(5673), lcm(11391, 5673) = 21540381

(e) gcd(1761, 1567) = 1 = (-105)(1761) + (118)(1567), lcm(1761, 1567) = 2759487

(f) gcd(507885, 60808) = 691 = (-17)(507885) + (142)(60808), lcm(507885, 60808) = 44693880
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D&F Exercise 0.2.5

Determine the value φ(n) for each integer n ≤ 30 where φ denotes the Euler φ-function.

Consider the prime factorization of n = pα1
1 pα2

2 · · · pαs
s , where p1, p2, · · · ps are the prime factors of n,

and α1, α2, · · ·αs are positive integers. We then have the following expression for φ:

φ(n) = pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαs−1
s (ps − 1) (1)

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

ps

)
. (2)

The first line in the above equation is stated on p. 7 in D&F. We can use the above expression to compute
the value of φ(n) for 1 ≤ n ≤ 30:

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2,
φ(7) = 6, φ(8) = 4, φ(9) = 6, φ(10) = 4, φ(1) = 10, φ(12) = 4,
φ(13) = 12, φ(14) = 6, φ(15) = 8, φ(16) = 8, φ(17) = 16, φ(18) = 6,
φ(19) = 18, φ(20) = 8, φ(21) = 12, φ(22) = 10, φ(23) = 22, φ(24) = 8,
φ(25) = 20, φ(26) = 12, φ(27) = 18, φ(28) = 12, φ(29) = 28, φ(30) = 8.

(3)

D&F Exercise 0.2.7

If p is a prime prove that there do not exist nonzero integers a and b such that a2 = pb2 (i.e.,
√
p is not a

rational number).

Let a, b, and c be positive integers, and p be a prime number. To begin, we need to prove two smaller
results:

(i) If a|bc and (a, b) = 1, then a|c.

(ii) If p is prime and p|ab, then p|a or p|b.

Proof of (i). Given (a, b) = 1, we can use Bézout’s theorem to say that there exists integers x and y
such that

ax+ by = 1. (4)

Multiplying both sides by c, we have:

acx+ bcy = c. (5)

Furthermore, since a|bc, there is a positive integer k such that ak = bc. Inserting this into the above
equation:

a(cx+ ky) = c. (6)

Because cx+ ky is an integer, we can conclude that a|c.
Proof of (ii). Assume p|ab. We will consider two exhaustive cases: when p|b and when p ∤ b. In the

first case, we have assumed p|b, which completes the proof. In the second case, we assume p ∤ b, but this
means (p, b) = 1 because p is prime, and we can use the result in (i) to conclude that p|a, which also
proves the desired result.
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Now to prove the original statement that
√
p is not a rational number. We proceed using proof by

contradiction. Assume
√
p is a rational number, i.e., there exists integers a and b such that

√
p =

a

b
, (7)

where we also assume, without loss of generality, that a and b have no common factors, i.e., the fraction
is fully reduced. Squaring both sides of the above equation and multiplying both sides by b2, we have:

pb2 = a2. (8)

So, p|a2. Using (ii), we can conclude p|a, i.e., there exists an integer k such that pk = a, which can be
inserted into the above equation:

pb2 = p2k2 (9)

b2 = pk2. (10)

So, p|b2. Using (ii), we can conclude p|b. Therefore, we have claimed that both p|a and p|b, which is
contrary to our assumption that a and b have no common factors. Therefore,

√
p is not rational.

D&F Exercise 0.2.8

Let p be a prime, n ∈ Z+. Find a formula for the largest power of p which divides n! = n(n− 1)(n− 2) · · · 2 · 1
(it involves the greatest integer function).

Let p be a prime, n ∈ Z+. Our aim will be to find a formula for a largest power of p which divides n!.
To quickly illustrate the method of solution, we can decompose n! as a series of multiplications of every
integer less than or equal to n:

n! = 1 · 2 · 3 · · ·n (11)

We can think of this multiplicative decomposition as a list of integers [1, 2, 3, · · · , n]. If we were to
decompose the each item in the list into multiplicative factors, we want to know how many factors of p
appear in the list in total. We can proceed by asking the following series of questions. First, which items
in the list have at least one factor of p? The answer is all the multiples of p. The number of multiples
of p in the list is ⌊n/p⌋. Next, which items in the list have at least 2 factors of p? The answer is all the
multiples of p2. The number of multiples of p2 in the list is ⌊n/p2⌋. We can keep asking this question,
asking which items in the list have at least one factor of pk, increasing k every time, until k is large
enough were we can stop. At what value of k do we stop? That is, we want to know the maximum value
of k such that pk ≤ n. We can take the log of both sides, and the inequality if preserved, since log is
a monotonic function, yielding k ≤ logp n. But since k is an integer, we can preserve this inequality by
using the floor function, k ≤ ⌊logp n⌋. So, the total number of factors of p in n! is:

α :=

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·+

⌊
n

p⌊logp n⌋

⌋
=

⌊logp n⌋∑
i=1

⌊
n

pi

⌋
(12)

Since α is the total number of factors of p in n!, then α is the largest power of p that divides n!.
We will find it useful later on to derive an upper bound on α. To do so, we can note the following:

⌊logp n⌋∑
i=1

⌊
n

pi

⌋
≤

⌊logp n⌋∑
i=1

n

pi
=

n

p− 1

(
1− p−⌊logp n⌋

)
≤ n

p− 1

(
1− p− logp n

)
=
n− 1

p− 1
(13)
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The summarize, the number of factors of p in n! can be no greater than (n− 1)/(p− 1).

D&F Exercise 0.2.9

Write a computer program to determine the greatest common divisor (a, b) of two integers a and b and to express
(a, b) in the form ax+ by for some integers x and y.

Below is a python function that takes a and b as inputs, and prints their greatest common divisor
(gcd), their least common multiple (lcm), and a (non-unique) expression for the gcd in the form ax+ by,
where x and y are integers.

The main idea behind this algorithm is the recursive expression for the remainder after each step in
the Euclidean algorithm:

rn = rn−2 − qrn−1 (14)

where q = ⌊rn−2/rn−1⌋. This can be easily derived by writing down subsequent steps in the algorithm,
noting that the equations require the initial conditions r−2 = a and r−1 = b.

def eu l i d ean a l go r i thm ( a : int , b : int ) −> None :

# ensure both a and b are i n t e g e r s
i f ( a % 1 != 0) or (b % 1 != 0 ) :

print ( ” Error !  P lease  input  i n t e g e r s . ” )
return

# choose b to be the sma l l e r i n t e g e r
b , a = sorted ( [ a , b ] )

# i n i t i a l c ond i t i on s
x , x o ld = 0 , 1
y , y o ld = 1 , 0
r , r o l d = b , a

# Eucl idean a l gor i thm
while r > 0 :

q = r o l d // r
x , x o ld = x o ld − q∗x , x
y , y o ld = y o ld − q∗y , y
r , r o l d = r o l d − q∗ r , r

gcd , x , y = r o ld , x old , y o ld
lcm = int ( a∗b/gcd )

print ( f ”gcd ({ a } ,  {b})  = {gcd}  = ({x } ) ({ a })  + ({y } ) ({b}) ” )
print ( f ” lcm ({ a } ,  {b})  = { lcm}” )

Results using this algorithm can be found in Exercise 0.2.1.

D&F Exercise 0.2.10

Prove for any given positive integer N there exist only finitely many integers n with φ(n) = N where φ denotes
the Euler φ-function. Conclude in particular that φ(n) tends to infinity as n tends to infinity.

[Unsolved]
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III. Z/nZ: THE INTEGERS MODULO n

D&F Exercise 0.3.4

Compute the remainder when 37100 is divided by 29.

In the following, mod 29 is implied:

37 ≡ 8 (15)

372 ≡ 82 = 64 ≡ 6 (16)

374 = (372)2 ≡ 62 = 36 ≡ 7 (17)

378 = (374)2 ≡ 72 = 49 ≡ 20 (18)

3716 = (378)2 ≡ 202 = 400 ≡ 23 (19)

3732 = (3716)2 ≡ 232 = 529 ≡ 7 (20)

3764 = (3732)2 ≡ 72 = 49 ≡ 20 (21)

37100 = 3764 · 3732 · 374 ≡ 20 · 7 · 7 = 980 ≡ 23 (22)

In summary, 37100 ≡ 23 (mod 29).

D&F Exercise 0.3.6

Prove that the square of the elements in Z/4Z are just 0 and 1.

We will square each element of Z/4Z, i.e., 0, 1, 2, and 3, and show explicitly that they are either equal
to 0 or 1:

0
2 ≡ 02 ≡ 0 (23)

1
2 ≡ 12 ≡ 1 (24)

2
2 ≡ 22 ≡ 4 ≡ 0 (25)

3
2 ≡ 32 ≡ 9 ≡ 1 (26)

D&F Exercise 0.3.7

Prove for any integers a and b that a2 + b2 never leaves a remainder of 3 when divided by 4 (use the previous
exercise).

Let a, b ∈ Z. To determine whether a2 + b2 can ever have a remainder of 3 when divided by 4, it

suffices to ask whether a2 + b2
?≡ 3 (mod 4). To show that this is not possible, we can use modular

arithmetic mod 4:

a2 + b2 ≡ a2 + b2 ≡ a2 + b
2 ≡


0, if a2 = 0, b

2
= 0

1, if a2 = 1, b
2
= 0

1, if a2 = 0, b
2
= 1

2, if a2 = 1, b
2
= 1

(27)

The last step uses the result from the previous problem, i.e., that the square of elements of Z/4Z are
either 0 or 1. Therefore, a2 + b2 cannot have a remainder of 3 when divided by 4, it can only have a
remainder of 0, 1, or 2.
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D&F Exercise 0.3.8

Prove that the equation a2 + b2 = 3c2 has no solutions in nonzero integers a, b, and c. [Consider the equation
mod 4 as in the previous two exercises and show that a, b, and c would all have to be divisible by 2. Then each
a2, b2, and c2 has a factor of 4 and by dividing through by 4 show that there would be a smaller set of solutions
to the original equation. Iterate to reach a contradiction.]

Let a, b, c be nonzero integers. To prove that the equation a2 + b2 = 3c2 has no solutions, we’ll begin
by considering this equation mod 4:

a2 + b2 ≡ 3c2 (28)

a2 + b
2 ≡ 3c2 (29)

In the previous exercises, two things were shown: (i) square of the elements in Z/4Z are just 0 and 1,
and (ii) a2 + b2 can only ever be 0, 1, or 2. Using (i), c2 must be either 0 or 1, so 3c2 can be only 0

or 3. Using (ii), if a2 + b
2 ≡ 3c2, then a2 + b

2
and c2 must be congruent to 0. This means that the

quantities a2 + b2 and c2 are both divisible by 4. So, we can define new variables a′ = a/4, b′ = b/4, and
c′ = c/4, yielding an equation of the same form: a′2+ b′2 = 3c′2. But then we can perform the same steps
to conclude that a′, b′, and c′ themselves are divisible by 4, yielding new variables a′′ = a′/4, b′′ = b′/4,
c′′ = c′/4, and this process can be repeated ad infinitum. However, this is not possible, since one cannot
divide a nonzero integer by 4 an arbitrary number of times, yielding an integer every time. Therefore,
there are no nonzero integer solutions to a2 + b2 = 3c2.

D&F Exercise 0.3.10

Prove that the number of elements of (Z/nZ)× is φ(n) where φ denotes the Euler φ-function.

The elements of Z/nZ are in a one-to-one correspondence with the nonnegative integers less than
n. On the one hand, the set (Z/nZ)× only contains the elements a of Z/nZ for which (a, n) = 1. On
the other hand, φ(n) is the number of nonnegative integers a that are less than n for which (a, n) = 1.
Because of this correspondence, the number of elements of (Z/nZ)× is φ(n).

D&F Exercise 0.3.12

Let n ∈ Z, n > 1, and a ∈ Z with 1 ≤ a ≤ n. Prove if a and n are not relatively prime, there exists an integer
b with 1 ≤ b < n such that ab ≡ 0 (mod n), and deduce that there cannot be an integer c such that ac ≡ 1 (mod
n).

Let n ∈ Z, n > 1, and a ∈ Z with 1 ≤ a ≤ n. Since a and n are not relatively prime, i.e., (a, n) ̸= 1, let
(a, n) = d, where d > 1. Then there exist integers q and b such that a = qd and n = bd, where 1 ≤ q < a
and 1 ≤ b < n. Solving for d in both of these equations, and setting them equal yields a/q = n/b, or
rather, ab = qn, which is just the statement that ab ≡ 0 (mod n).

We have shown that there exists an integer b with 1 ≤ b < n such that ab ≡ 0 (mod n). Suppose
there is an integer c such that ac ≡ 1 (mod n). Multiplying both sides by b, we have abc ≡ b (mod n).
But ab ≡ 0 (mod n), so this implies 0 ≡ b (mod n), which means that b is a multiple of n. However, this
is contrary to our assumption that 1 ≤ b < n. Therefore, there cannot be an integer c such that ac ≡ 1
(mod n).

D&F Exercise 0.3.13

Let n ∈ Z, n > 1, and a ∈ Z with 1 ≤ a ≤ n. Prove that if a and n are relatively prime then there is an integer
c such that ac ≡ 1 (mod n) [use the fact that the g.c.d. of two integers is a Z-linear combination of the integers.]
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Let n ∈ Z, n > 1, and a ∈ Z with 1 ≤ a ≤ n. According to Bézout’s theorem, there exists integers
c and q such that ac + nq = (a, n). This equation can be rearranged as ac = −nq + (a, n), which is the
same as ac ≡ (a, n) (mod n). Since (a, n) = 1, then we have ac ≡ 1 (mod n).

IV. GROUPS: DEFINITION AND EXAMPLES

D&F Exercise 1.1.1

Determine which of the following binary operations are associative:

(a) the operation ⋆ on Z defined by a ⋆ b = a− b

(b) the operation ⋆ on R defined by a ⋆ b = a+ b+ ab

(c) the operation ⋆ on Q defined by a ⋆ b =
a+ b

5

(d) the operation ⋆ on Z × Z defined by (a, b) ⋆ (c, d) = (ad+ bc, bd)

(e) the operation ⋆ on Q − {0} defined by a ⋆ b =
a

b

(a) ⋆ is not associative. As an example, let a = 1, b = 2, c = 3. Then (a ⋆ b) ⋆ c = (1 − 2) − 3 = −4,
but a ⋆ (b ⋆ c) = 1− (2− 3) = 2.

(b) (a ⋆ b) ⋆ c = a+ b+ c+ ab+ ac+ bc+ abc, and a ⋆ (b ⋆ c) = a+ b+ c+ ab+ ac+ bc+ abc, so this
operation is associative.

(c) ⋆ is not associative. As an example, let a = 1, b = 2, c = 3. Then (a⋆b)⋆c =
a+b
5 + c

5
=

1+2
5 + 3

5
=

18

25
, but a ⋆ (b ⋆ c) =

a+ b+c
5

5
=

1 + 2+3
5

5
=

2

5
.

(d) ((a, b) ⋆ (c, d)) ⋆ (e, f) = (adf + bcf + bde, bdf), and (a, b) ⋆ ((c, d) ⋆ (e, f)) = (adf + bcf + bde, bdf),
so ⋆ is associative.

(e) ⋆ is not associative. As an example, let a = 1, b = 2, c = 3. Then (a ⋆ b) ⋆ c =
a

bc
=

1

(2)(3)
=

1

6
,

but a ⋆ (b ⋆ c) =
ac

b
=

(1)(3)

2
=

3

2
.

D&F Exercise 1.1.5

Prove for all n > 1 that Z/nZ is not a group under multiplication of residue classes.

The set Z/nZ is not a group under multiplication of residue classes because 0 does not have an inverse
in Z/nZ. To show this, we will proceed via proof by contradiction. Assume that Z/nZ is a group under
multiplication of residue classes, call it G. First, it must contain an identity element 1 with the property
that for any a ∈ G, that a · 1 = a. This follows from the definition of a group. Second, G contains an
element 0 with the property that for any a ∈ G, that a · 0 = 0. This follows from the properties of Z/nZ.

On the one hand, 0 · 1 = 0 ̸= 1, so we can conclude that 0 is not the identity. (Since n > 1, we can
be assured that there are at least two elements in G, i.e., 1 and 0.) On the other hand, 0 must have an
inverse b ∈ G, i.e., b · 0 = 1. But since b · 0 = 0, then 1 = 0, which is in contradiction to the previous
conclusion that 1 ̸= 0. Therefore, Z/nZ is not a group under multiplication of residue classes.
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D&F Exercise 1.1.6

Determine which of the following sets are groups under addition:

(a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd

(b) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are even

(c) the set of rational numbers of absolute value < 1

(d) the set of rational numbers of absolute value ≥ 1 together with 0

(e) the set of rational numbers with denominators equal to 1 or 2

(f) the set of rational numbers with denominators equal to 1, 2, or 3.

(a) The set G of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd is a
group under addition. To show this, we will demonstrate that G has the following four properties:

• G is closed under addition. Let a, b ∈ G, where a and b can be expressed as fractions in lowest
terms a = c/d and b = e/f with odd denominators, where c, d, e, f are integers, (c, d) = 1,
(e, f) = 1, and d and f are odd. Under addition, a + b = c/d + e/f = (cf + ed)/(df). To
show that G is closed, we need to show that (cf + ed)/(df) has an odd denominator when
this fraction is expressed in lowest terms. Let (cf + ed)/(df) = x/y, where the fraction x/y is
in lowest terms. This means y|df . But d and f are both odd, so df is also odd. But no even
number can divide an odd number, so y cannot be even. Therefore, y is odd, and this means
G is closed under addition.

• G contains and identity. The identity element is 0/1, since a+ 0/1 = a for all a ∈ G.

• All elements of G have an inverse in G. The inverse of an element a ∈ G is −a since −a ∈ G,
and a− a = −a+ a = 0/1.

• G is associative. Let a, b, c ∈ G. Associativity of G follows from the associativity over the
rational numbers.

(b) The set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are even is
not a group under addition. To show this, consider rational numbers a = 1/2 and b = 1/2, both of
which are in lowest terms and have denominators that are even. However, a+ b = 1/2+1/2 = 1/1,
which is a rational number in lowest terms with an odd denominator. So, this set is not closed
under addition and is therefore not a group.

(c) The set of rational numbers of absolute value < 1 is not a group under addition. To show this,
consider rational numbers a = 1/2 and b = 3/4, both of which have absolute value < 1. Under
addition, a + b = 1/2 + 3/4 = 5/4, which has absolute value > 1. So, this set is not closed under
addition, so it cannot be a group.

(d) The set of rational numbers of absolute value ≥ 1 together with 0 is not a group under addition.
To show this, consider rational numbers a = 3/2 and b = −1, both of which have absolute value
≥ 1. Under addition, a+ b = 3/2− 1 = 1/2, which has absolute value < 1. This set is not closed
under addition, so it cannot be a group.

(e) The set G of rational numbers with denominators equal to 1 or 2 under addition is a group. To show
this, we will demonstrate that it has the four following properties. In the following, let a, b, c ∈ Z
and m,n, ℓ ∈ {1, 2}.
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• G is closed under addition. Here, a/n and b/m are elements ofG. Under addition, a/n+b/m =
(am + bn)/(mn). Here, we will need to show that this fraction, has a denominator that is
equal to 1 or 2. Because m and n can each take on values 1 or 2, mn can take on three values:
1, 2, or 4. If mn = 1 or 2, then this is still a fraction with denominators equal to 1 or 2, so
these are elements of G. If mn = 4, then this only occurs when m = n = 2, and therefore
(am+ bn)/(mn) = (a+ b)/2, which is a fraction with denominator 2, so it is also an element
of G. Therefore, this G is closed under addition.

• G contains an identity. The identity is element is 0/1, since a/n+ 0/1 = a/n.

• All elements ofG have an inverse inG. The inverse of an element a/n is −a/n, since −a/n ∈ G
and a/n− a/n = −a/n+ a/n = 0/1.

• G is associative. Here, a/n, b/m, and c/ℓ are elements of G. Associativity of G follows from
associativity of addition over the rational numbers.

(f) The set G of rational numbers with denominators equal to 1, 2, or 3 under addition is not a group.
To show this, consider rational numbers a = 1/2 and b = 1/3, which have denominators equal to
2 and 3, respectively. Under addition, a + b = 1/2 + 1/3 = 5/6, which is a fraction that cannot
be expressed as a fraction with denominator equal to 1, 2, or 3. So, this set is not close under
addition, and it cannot be a group.

D&F Exercise 1.1.7

Let G = {x ∈ R|0 ≤ x < 1} and for x, y ∈ G let x ⋆ y be the fractional part of x+ y (i.e., x ⋆ y = x+ y− [x+ y]
where [a] is the greatest integer less than or equal to a). Prove that ⋆ is a well defined binary operation on G
and that G is an abelian group under ⋆ (called the “real numbers mod 1”).

Let G = {x ∈ R|0 ≤ x < 1} and for x, y ∈ G let x ⋆ y be the fractional part of x+ y.
First, we will show that ⋆ is a well defined binary operation on G. Let a, b ∈ G, and consider the

quantity a+b, which lies in the range 0 ≤ a+b < 2. Then we can consider two cases: (1) if 0 ≤ a+b < 1,
then [a+ b] = 0, so a ⋆ b = a+ b ∈ G, and (2) if 1 ≤ a+ b < 2, then [a+ b] = 1, so a ⋆ b = a+ b− 1 ∈ G.
Therefore, ⋆ is a well defined binary operation on G.

Second, we will show that G is an abelian group under ⋆. For G to be an abelian group under ⋆, it
must satisfy the following five requirements:

• ⋆ must be a well defined binary operation on G. This was shown in the previous paragraph.

• G contains the identity element. Here, the identity element is 0 ∈ G, since a ⋆ 0 = a+ 0− [a] = a
for all a ∈ G, since [a] = 0.

• All elements of G have an inverse also in G. To show this, let a ∈ G, then the inverse of a
is (1 − a) ∈ G, since a ⋆ (1 − a) = a + 1 − a − [a + 1 − a] = 1 − [1] = 0 and (1 − a) ⋆ a =
1− a+ a− [1− a+ a] = 1− [1] = 0 for all a ∈ G, since [1] = 0.

• G is associative under ⋆. This follows from the associativity of the real numbers under addition.

• G is abelian under ⋆. Let a, b ∈ G. Then a ⋆ b = a + b − [a + b] and b ⋆ a = b + a − [b + a] =
a+ b− [a+ b] = a ⋆ b, for all a, b ∈ G.

Note: Here, ⋆ reminds me of adding angles that represent points on a circle, and G seems like it may
be isomorphic to the Lie group U(1).
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D&F Exercise 1.1.8

Let G = {x ∈ C|zn = 1 for some n ∈ Z+}.

(a) Prove that G is a group under multiplication (called the group of roots of unity in C).

(b) Prove that G is not a group under addition.

Let G = {z ∈ C|zn = 1 for some n ∈ Z+}.

(a) To prove that G is a group under multiplication, we must show the following four properties:

• G contains the identity element of (C, ·), i.e., 1. Here, 1 ∈ G, since z · 1 = z for all z ∈ G.

• G is closed under multiplication. To show this, let y, z ∈ G. Specifically, this means both
y and z are nth roots of unity, i.e., yn = zn = 1. We can note that (yz)n = ynzn, which
follows from the fact that multiplication is commutative over C. From this, we can conclude
that (yz)n = ynzn = 1. Therefore (yz)n is also a nth root of unity, so G is closed under
multiplication.

• All elements of G have an inverse also in G. To show this, let z ∈ G. The inverse of z ∈ G is
zn−1, since zn−1 ∈ G and zzn−1 = zn−1z = zn = 1.

• Associativity follows from the fact that multiplication is associative over C.

(b) To prove that G is not a group under addition, consider adding the element 1 to itself: 1 + 1 = 2,
but 2 is not an element of G, since 2n ̸= 1 for any n ∈ Z+.

D&F Exercise 1.1.9

Let G = {a+ b
√
2 ∈ R|a, b ∈ Q}.

(a) Prove that G is a group under addition.

(b) Prove that the nonzero elements of G are a group under multiplication. [“Rationalize the denominators” to
find the multiplicative inverses.]

Let G = {a+ b
√
2 ∈ R|a, b ∈ Q}.

(a) To prove that G is a group under addition, we must show the following four properties:

• The element 0 = 0 + 0
√
2 is the identity element of G. This follows since 0 ∈ Q, and letting

g = a+ b
√
2 ∈ G, where a, b ∈ Q, and we can note that g + 0 = a+ b

√
2 + 0 = a+ b

√
2 = g.

This holds for all g ∈ G, so 0 is the identity element.

• G is closed under addition. To show this, let g, g′ ∈ G, such that g = a+b
√
2 and g′ = c+d

√
2,

where a, b, c, d ∈ Q. Here, g + g′ = a+ b
√
2 + c+ d

√
2 = (a+ b) + (c+ d)

√
2. Since a+ b ∈ Q

and c+ d ∈ Q, then g + g′ ∈ G for all g, g′ ∈ G.

• Every element of G has an inverse also in G. Here, the inverse of an element g = a + b
√
2,

where a, b ∈ Q, is −g = −a − b
√
2 ∈ G. This follows since −a,−b ∈ Q, and since g − g =

a+ b
√
2− a− b

√
2 = 0 and −g − g = −a− b

√
2 + a+ b

√
2 = 0.

• Associativity follows from the associativity of addition on R.

(b) Let G′ consist of the nonzero elements of G, i.e., G′ = G− {0}. To prove that G′ is a group under
multiplication, we must show the following four properties:
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• The element 1 = 1 + 0
√
2 is the identity element of G′. To show this, we can note that

1 = 1 + 0
√
2 ∈ G′, and letting g = a + b

√
2 ∈ G, where a, b ∈ Q, we can also note that

g · 1 = a+ b
√
2 = g. Since this holds for all g ∈ G, then 1 is the identity.

• G′ is closed under multiplication. To show this, let g, g′ ∈ G′, such that g = a + b
√
2 and

g′ = c+ d
√
2, where a, b, c, d ∈ Q. Here, gg′ = (a+ b

√
2)(c+ d

√
2) = (ac+2bd)+ (ad+ bc)

√
2.

Since ac+ 2bd ∈ Q and ad+ bc ∈ Q, then gg′ ∈ G′.

• Every element of G′ has an inverse also in G′. Let g = a + b
√
2 ∈ G, where a, b ∈ Q. The

multiplicative inverse of g is

g−1 =
a

a2 − 2b2
−
(

b

a2 − 2b2

)√
2. (30)

Here, the property gg−1 = g−1g = 1 can be easily verified. The following will show that
g−1 ∈ G′. We can note that if a2 − 2b2 ̸= 0, then a/(a2 − 2b2) ∈ Q and b/(a2 − 2b2) ∈ Q,
and therefore g−1 ∈ G′. To show that it is always the case that a2 − 2b2 ̸= 0, we can use the
result from D&F Exercise 0.2.7 (which states that there are no integer solutions for x, y to the
equation x2− 2y2 = 0). In order to use this previous result, we will proceed by contradiction.
Assume a2 − 2b2 = 0. Let the rational numbers a and b have a fractional representation
a = c/d and b = e/f , where c, d, e, f ∈ Z and d, f ̸= 0. Multiplying both sides of the equation
by (df)2, we have (adf)2 − 2(bdf)2 = 0. Now let x = adf and y = bdf , yielding x2 − 2y2 = 0,
noting that x, y ∈ Z. Since according to D&F Exercise 0.2.7 there are no integer solutions
x, y to the equation x2 − 2y2 = 0, then a2 − 2b2 ̸= 0. Therefore, g−1 ∈ G′.

• G′ is associative under multiplication. This follows from the associativity of multiplication
over R.

D&F Exercise 1.1.11

Find the orders of each element of the additive group Z/12Z.

The order of an element a ∈ Z/nZ under addition is the lowest value of k ∈ Z such that ak ≡ 0 (mod
n). A closed-form expression for the order of a is n/(a, n). Another way to illustrate this is to add a to
itself repeatedly until it yields a multiple of 12. The orders of each element of Z/12Z are as follows:

n 0 1 2 3 4 5 6 7 8 9 10 11

|n| 1 12 6 4 3 12 2 12 3 4 6 12
(31)

D&F Exercise 1.1.12

Find the orders of the following elements of the multiplicative group (Z/12Z)× : 1,−1, 5, 7,−7, 13.

The order of an element of the multiplicative group a ∈ (Z/nZ)× is the lowest value of k ∈ Z+ such
that ak ≡ 1 (mod n). When n = 12, the following elements of (Z/nZ)× are found by brute force:

n 1 −1 5 7 −7 13

|n| 1 2 2 2 2 1
(32)

D&F Exercise 1.1.16

Let x be an element of G. Prove that x2 = 1 if and only if |x| is either 1 or 2.
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Let x ∈ G. If |x| = 1, then x = 1, and x2 = 1. Otherwise, if |x| = 2, then x2 = 1, by definition.
Conversely, if x2 = 1, then either x is the identity (in which case |x| = 1) or |x| = 2 (by definition).

D&F Exercise 1.1.17

Let x be an element of G. Prove that if |x| = n for some positive integer n, then x−1 = xn−1.

Let x ∈ G, where |x| = n for n ∈ Z+. The inverse of x is xn−1, i.e., x−1 = xn−1. To show this,
xxn−1 = 1 and xn−1x = 1.

D&F Exercise 1.1.21

Let G be a finite group and let x be an element of G of order n. Prove that if n is odd, then x = (x2)k for some
k.

Let x ∈ G, where xn = 1. If n is odd, then one can let n = 2k− 1, where k ∈ Z+. Then xn = x2k−1 =
x2kx−1 = 1. Multiplying on the right by x, we have x2k = x. Therefore, x = (x2)k, as desired.

D&F Exercise 1.1.22

If x and g are elements of the group G, prove that |x| = |g−1xg|. Deduce that |ab| = |ba| for all a, b ∈ G.

Let x, g ∈ G, where |x| = n. We will now find the order of g−1xg ∈ G by evaluating (g−1xg)n:

(g−1xg)n = (g−1xg)(g−1xg) · · · (g−1xg)︸ ︷︷ ︸
n times

(33)

= g−1xng (34)

= g−1g (35)

= 1. (36)

From this calculation, we can conclude that (g−1xg)n = 1. This implies |g−1xg| ≤ n. To prove that
indeed n = |g−1xg|, we will proceed by contradiction. Assume |g−1xg| = k, where 1 ≤ k < n. Therefore
xk = gg−1xkgg−1 = g(g−1xg)kg−1 = g(1)g−1 = 1. But this implies |x| ≤ k, which is impossible, since
k < n and |x| = n. Therefore, k = n, and |g−1xg| = n.

We will now deduce that |ab| = |ba| for all a, b ∈ G. Let a, b be arbitrary elements of G. Now let
x = ab and g = a. Then |x| = |ab| and |g−1xg| = |ba|. Since |x| = |g−1xg|, then |ab| = |ba|.

D&F Exercise 1.1.25

Prove that if x2 = 1 for all x ∈ G then G is abelian.

Let G be a group where all x ∈ G satisfy x2 = 1. We will show that G is abelian. To begin, let x, y ∈ G,
where by definition of G, x2 = y2 = 1. Importantly, the element xy ∈ G also satisfies (xy)2=1, by
definition of G. This means x−1 = x, y−1 = y, and (xy)−1 = xy. Therefore, xy = (xy)−1 = y−1x−1 = yx.
Therefore, G is abelian.

D&F Exercise 1.1.31

Prove that any finite group G of even order contains an element of order 2. [Let t(G) be the set {g ∈ G|g ̸= g−1}.
Show that t(G) has an even number of elements and every nonidentity element of G− t(G) has order 2.]
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Let G be a finite group of even order. We will show that G must contain at least one element of order
2. We begin by defining the set t(G) = {g ∈ G|g ̸= g−1}, i.e., the set of elements of G that are not their
own inverses. We will begin by first proving three smaller results:

(i) |G− t(G)| is even. To prove this, note that none of the elements of t(G) is its own inverse, so this
means the elements of t(G) can be grouped into pairs, where the pairs are comprised of an element
and its unique inverse. This means |t(G)| is even. Since |G| is also even, therefore |G − t(G)| is
even.

(ii) G− t(G) contains the identity. To prove this, note that the identity element is its own inverse, so
the identity is not contained in t(G), but it must be contained in G, since G is a group. Therefore,
G− t(G) contains the identity.

(iii) The nonidentity elements of G− t(G) have order 2. To prove this, note that G− t(G) only contains
elements that are their own inverses. Using the result from Exercise 1.1.16, such elements have
orders either 1 or 2. Since only the identity element has order 1, then the nonidentity elements of
G− t(G) has order 2.

Combining (i) with (ii), we can conclude that |G − t(G)| ≥ 2. But one of these elements of G − t(G)
must be the identity, according to (ii). So therefore there are a nonzero number of remaining nonidentity
elements in G− t(G), and, according to (iii), these elements must have order 2.

D&F Exercise 1.1.32

If x is an element of finite order n in G, prove that the elements 1, x, x2, · · · , xn−1 are all distinct. Deduce that
|x| ≤ |G|.

Let G be a finite group, and x ∈ G, where |x| = n. We will prove that 1, x, x2, · · · , xn−1 are all distinct.
Suppose to the contrary that there exist elements xℓ and xm which are not distinct, i.e., xℓ = xm, where
1 ≤ ℓ < m ≤ n − 1. Then we would have xn = xℓxn−ℓ = xmxn−ℓ = xnxm−ℓ, which implies xm−ℓ = 1,
and |x| ≤ m− ℓ. But m− ℓ < n, which is a contradiction. Therefore, the elements 1, x, x2, · · · , xn−1 are
all distinct.

Since 1, x, x2, · · · , xn−1 are all distinct, and there are n such elements, we can conclude that n ≤ |G|.
Since |x| = n, then |x| ≤ G.

V. DIHEDRAL GROUPS

D&F Exercise 1.2.4

If n = 2k is even and n ≥ 4, show that z = rk is an element of order 2 which commutes with all elements of
D2n. Show also that z is the only nonidentity element of D2n which commutes with all elements of D2n.

Consider the group D2n = ⟨r, s|rn = s2 = 1, rs = sr−1⟩, where n = 2k and k ∈ Z+, such that k ≥ 2.
Let z = rk. This problem will be broken up in to the following results:

(a) z is an element of order 2. To show this, we can note that r has order n, which implies rn = r2k =
(rk)2 = 1. Using the result from D&F Exercise 1.1.16, we can conclude that rk has order 1 or 2.
Now, if rk has order 1, then rk = 1 even though k < n. But this is impossible (cf D&F Exercise
1.1.32), since it would imply that 1 = r0 and rk are not distinct. Therefore rk has order 2.

(Note: (rk)2 = 1 if and only if rk = r−k.)
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(b) z commutes with all elements of D2n. To show this, note that elements of D2n fall into two
categories: (1) elements that can be represented as rℓ, where ℓ ∈ Z and 0 ≤ ℓ ≤ n − 1, and (2)
elements that can be represented as rℓs, where ℓ ∈ Z and 0 ≤ ℓ ≤ n−1. z commutes with elements
in the first category, since zrℓ = rkrℓ = rk+ℓ = rℓrk = rℓz. z also commutes with elements in the
second category, since z(rℓs) = rkrℓs = rℓrks = rℓsr−k = rℓsrk = (rℓs)z. Therefore z commutes
with all elements of D2n.

(c) z is the only nonidentity element of D2n which commutes with all elements of D2n. To show this,
we will first need to prove the following result:

(i) Let x be a element of finite order n in G. If n = 2a for a ∈ Z+, and 1 ≤ i < n, then xi = x−i

only if i = a (cf D&F Exercise 1.1.33b). To show this, we can consider two cases:

(1) Let i ̸= a. Because n is even, then i ̸= n− i. Since xi ̸= xn−i and xn−i = x−i, therefore
xi ̸= x−i.

(2) Let i = a. We can follow the same line of reasoning in part (a) of this problem to conclude
that xi has order 2 when i = a. Therefore (xi)2 = 1, and xi = x−i.

Therefore, xi = x−i only when i = a.

Continuing with the proof, consider that there is some element, call it z′, which commutes with all
elements of D2n. We can represent z′ as smrℓ, where m = 0 or 1, and ℓ ∈ Z, where 0 ≤ ℓ ≤ n− 1.
We will now see what conditions are imposed on m and ℓ by requiring that z′ commutes s ∈ D2n.
We will find it useful to consider the cases m = 0 and m = 1 separately. Assume m = 0, i.e.,
z′ = rℓ. Here, z′s = rℓs = sr−ℓ. If z′ is to commute with s, i.e., z′s = sz′, then this requires
r−ℓ = rℓ. Using the result from (i) above, then it must be the case that ℓ = k, i.e., z′ = z. Now
assume m = 1, i.e., z′ = srℓ. Here, z′s = srℓs = s(sr−ℓ). Again, if z′ is to commute with s, then
this requires r−ℓ = rℓ, which means ℓ = k, and therefore z′ = z. So, z is the only element of D2n

that commutes with s. Noting the result from (b), we can conclude z is the only element of D2n

that commutes with all elements of D2n.

D&F Exercise 1.2.8

Find the order of the cyclic subgroup of D2n generated by r.

The order of the cyclic subgroup of D2n generated by r is n. To show this, note that the elements of
this cyclic subgroup are rk, where k ∈ Z and 0 ≤ k ≤ n − 1. So, r has order n. Finally, we can use the
result from D&F Exercise 1.1.32 to conclude that rk are distinct, so the order of the cyclic subgroup of
D2n generated by r is n.

D&F Exercises 1.2.9 - 1.2.13

In these problems, we are asked to find the order of the group G of rigid rotations in R3 of the five
Platonic solids. The solutions will utilize the fact that the Platonic solids all have the symmetry that if
an edge is rotated to the location of another edge, this leaves the shape invariant. Therefore, since each
edge has two orientations, the number of such rigid rotations is twice the total number of edges.

• The tetrahedron has 6 edges, so |G| = 12.

• The cube has 12 edges, so |G| = 24.

• The octahedron has 12 edges, so |G| = 24.
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• The dodecahedron has 30 edges, so |G| = 60.

• The icosahedron has 30 edges, so |G| = 60.

D&F Exercise 1.2.18

Let Y = ⟨u, v|u4 = v3 = 1, uv = v2u2⟩.

(a) Show that v2 = v−1. [Use the relation v3 = 1.]

(b) Show that v commutes with u3. [Show that v2u3v = v3 by writing the left hand side as (v2u2)(uv) and using
the relations to reduce this to the right hand side. Then use part (a).]

(c) Show that v commutes with u. [Show that u9 = u and then use part (b).]

(d) Show that uv = 1. [Use part (c) and the last relation.]

(e) Show that u = 1, deduce that v = 1, and conclude that Y = 1. [Use part (d) and the equation v4v3 = 1.]

(a) Starting with the relation v3 = 1, we can multiply both sides by v−1, so therefore v2 = v−1.

(b) We can deduce the following relation: v2u3v = (v2u2)(uv) = (uv)(uv) = (uv)(v2u2) = uv3u2 = u3,
i.e., v2u3v = u3. Using (a), we have v−1u3v = u3, so therefore u3v = vu3.

(c) Starting with u4 = 1, we can multiply both sides by u5, i.e., u9 = u5 = (u4)u = u. Using this result
and the one from part (b), we can deduce uv = u9v = u3u3u3v = vu9 = vu, so v and u commute.

(d) Starting with the relation uv = v2u2, we can then use (c) to say say vu = v2u2, which implies
vu = uv = 1.

(e) We can make the following relation given those we have already found: 1 = u4v3 = u3(uv)v2 =
u3v2 = u2(uv)v = u2v = u(uv) = u. Therefore u = 1, and since uv = 1, then v = 1. So, since u
and v are both the identity, then the group Y is the trivial one, which contains only one element,
i.e., the identity.

VI. SYMMETRIC GROUPS

D&F Exercise 1.3.1

Let σ be the permutation

1 7→ 3 2 7→ 4 3 7→ 5 4 7→ 2 5 7→ 1 (37)

and let τ be the permutation

1 7→ 5 2 7→ 3 3 7→ 2 4 7→ 4 5 7→ 1 (38)

Find the cycle decomposition of each of the following permutations: σ, τ , σ2, στ , τσ, and τ2σ.

(a) σ = (135)(24)

(b) τ = (15)(23)

(c) σ2 = (135)(24)(135)(24) = (153)



20

(d) στ = (135)(24)(15)(23) = (2534)

(e) τσ = (15)(23)(135)(24) = (1243)

(f) τ2σ = (15)(23)(15)(23)(135)(24) = (135)(24) = σ.

D&F Exercise 1.3.3

For each of the permutations whose cycle decompositions were computed in [D&F Exercise 1.3.1] compute its
order.

(a) σ = (135)(24) has order 6, since it is the smallest power such that σ raised to that power is unity,
i.e., σ6 = (σ2)3 = (153)(153)(153) = 1.

(b) τ = (15)(23) has order 2, since is the smallest power such that τ raised to that power is unity, i.e.,
τ2 = (15)(23)(15)(23) = 1.

(c) σ2 = (153) has order 3, since is the smallest power such that σ2 raised to that power is unity, i.e.,
(σ2)3 = σ6 = 1.

(d) στ = (2534) has order 4, since is the smallest power such that στ raised to that power is unity,
i.e., (στ)4 = (2534)(2534)(2534)(2534) = 1.

(e) τσ = (1243) has order 4, since is the smallest power such that τσ raised to that power is unity,
i.e., (τσ)4 = (1243)(1243)(1243)(1243) = 1.

(f) τ2σ = (135)(24) has order 6, since τ2σ = σ.

D&F Exercise 1.3.4

Compute the order of each of the elements in the following groups: (a) S3, (b) S4.

(a) The group elements of S3 and their orders can be found below:

g ∈ S3 |g|
1 1

(12) 2

(13) 2

(23) 2

(123) 3

(132) 3

(39)
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(b) The group elements of S4 and their orders can be found below:

g ∈ S4 |g|
1 1

(12) 2

(13) 2

(14) 2

(23) 2

(24) 2

(34) 2

(123) 3

(132) 3

(234) 3

(243) 3

(134) 3

(143) 3

(124) 3

(142) 3

(1234) 4

(1342) 4

(1432) 4

(1423) 4

(1324) 4

(1243) 4

(12)(34) 2

(13)(24) 2

(14)(23) 2

(40)

D&F Exercise 1.3.5

Find the order of (1 12 8 10 4)(2 13)(5 11 7)(6 9).

The order of a permutation is the least common multiple of the lengths of the cycles in its cycle
decomposition (cf D&F Exercise 1.3.15). Since this permutation has cycles of lengths 5, 2, and 3, it
therefore has order 30.

D&F Exercise 1.3.6

Write out the cycle decomposition of each element of order 4 in S4.

See solution to D&F Exercise 1.3.4(b).

D&F Exercise 1.3.7

Write out the cycle decomposition of each element of order 2 in S4.

See solution to D&F Exercise 1.3.4(b).
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D&F Exercise 1.3.8

Prove that if Ω = {1, 2, 3, · · · } then SΩ is an infinite group (do not say ∞! = ∞).

Let Ω = {1, 2, 3, · · · }. We will prove that SΩ has an infinite number of elements. To do this, consider
a subset of elements σn ∈ SΩ where σn are the 2-cycles (n n+ 1). There is a one-to-one correspondence
between the set of these 2-cycles Σ = {σ1, σ2, σ3, · · · } and the positive integers {1, 2, 3, · · · }. Since the set
of positive integers is an infinite set, and Σ is a subset of SΩ, then SΩ has an infinite number of elements.

D&F Exercise 1.3.9

(a) Let σ be the 12-cycle (1 2 3 4 5 6 7 8 9 10 11 12). For which positive integers i is σi also a 12-cycle?

(b) Let τ be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers i is τ i also an 8-cycle?

(c) Let ω be the 14-cycle (1 2 3 4 5 6 7 8 9 10 11 12 13 14). Which positive integers i is ωi also a 14-cycle?

In the following, we will use the result from D&F Exercise 1.3.11, which states that given a m-cycle
σ, that σi is also an m-cycle if and only if i is relatively prime to m.

(a) For the given 12-cycle σ, the positive integers i where σi is also a 12-cycle will be the integers i
such that (i, 12) = 1.

(b) For the given 8-cycle τ , the positive integers i where τ i is also a 8-cycle will be the integers i such
that (i, 8) = 1.

(c) For the given 14-cycle ω, the positive integers i where ωi is also a 14-cycle will be the integers i
such that (i, 14) = 1.

D&F Exercise 1.3.11

Let σ be an m-cycle (1 2 · · · m). Show that σi is also an m-cycle if and only if i is relatively prime to m.

Let σ be an m-cycle and i be a positive integer. We will show that σi is also an m-cycle if and only
if i is relatively prime to m.

Assume i and m are relatively prime, i.e., (i,m) = 1. We will show that σi is an m-cycle. Since
σ is an m-cycle, 1 = σm = (σm)i = (σi)m, which implies |σi| ≤ m. Proceeding by contradiction, now
assume that |σi| = k, where 1 ≤ k < m. Since now (σi)k = σik = 1, and |σ| = m, then m|ik. Because
(i,m) = 1, this implies m|k (cf D&F Exercise 0.2.7). However, since k < m, m cannot divide k, which is
a contradiction. Therefore, |σi| = m, and σi is an m-cycle.

Conversely, assume σi is an m-cycle, so |σi| = m. We will show that i is relatively prime to m. To
do this, let d be a common divisor of m and i, so m/d and i/d are both integers. We can note that
1 = σm = (σm)i/d = (σi)m/d, which implies |σi| ≤ m/d. But |σi| = m, so d can only equal 1. If the only
common divisor between i and m is 1, then (i,m) = 1, and i is relatively prime to m.

D&F Exercise 1.3.15

Prove that the order of an element in Sn equals the least common multiple of the lengths of the cycles in its
cycle decomposition.

Consider σ is a permutation of order m that has the cycle decomposition σ = σ1σ2 · · ·σk, where each
σi are disjoint cycles of order mi and 1 ≤ i ≤ k. We will show that m is the least common multiple of
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all mi. To show this, we can note that because these cycles are disjoint, σm = σm1 σ
m
2 · · ·σmk = 1. So, for

each cycle, σmi = 1. This implies mi|m, i.e., m is a common multiple of all mi. Because |σ| = m, then m
is the smallest integer such that σm = 1. Therefore, m is the least common multiple of all mi.

D&F Exercise 1.3.16

Show that if n ≥ m then the number of m-cycles in Sn is given by

n(n− 1)(n− 2) · · · (n−m+ 1)

m
. (41)

[Count the number of ways of forming an m-cycle and divide by the number of representations of a particular
m-cycle.]

We will count the number of m cycles in Sn, where m ≤ n. For a given m cycle, one has n choices
where to place the first element, n − 1 choices to place the second element, etc., until one reaches the
final element, i.e., the m’th element, for which there is no choice. Thus, the number of such positions is
n(n− 1)(n− 2) · · · (n−m+1). Furthermore, each m cycle has m different equivalent representations, so
the total number of distinct m cycles is

n(n− 1)(n− 2) · · · (n−m+ 1)

m
. (42)

VII. MATRIX GROUPS

D&F Exercise 1.4.1

Prove that |GL2(F2)| = 6.

We will show that |GL2(F2)| = 6. To do this, we can use the fact stated in D&F Sec. 1.4 that if F
is a field, n ∈ Z+, and |F | = q < ∞, then |GLn(F )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1). Here,
|F2| = 2 and n = 2, so |GL2(F2)| = (22 − 1)(22 − 2) = 6.

An alternative approach is to explicitly represent the elements of |GL2(F2)| and show there are six of
them. Here, the elements of |GL2(F2)| have the following representation:(

a b

c d

)
, (43)

where a, b, c, d ∈ F2, and ad− bc ̸= 0. The matrices that satisfy these constraints are(
1 0

0 1

)
,

(
1 0

1 1

)
,

(
1 1

1 0

)
,

(
1 1

0 1

)
,

(
0 1

1 1

)
,

(
0 1

1 0

)
. (44)

Indeed, there are 6 such elements.

D&F Exercise 1.4.3

Show that GL2(F2) is non-abelian.

Using the results in D&F Exercise 1.4.1, we can verify that there exists two elements that do not
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commute: (
1 0

1 1

)(
0 1

1 0

)
=

(
0 1

1 1

)
, (45)

but (
0 1

1 0

)(
1 0

1 1

)
=

(
1 1

1 0

)
, (46)

so GL2(F2) is non-abelian.

D&F Exercise 1.4.4

Let n ∈ Z+. Show that if n is not prime then Z/nZ is not a field.

Let n ∈ Z+. We will show that if n is not prime, then Z/nZ is not a field. Specifically, we will show
that Z/nZ does not have a multiplicative inverse for all elements unless n is prime. Let a ∈ Z/nZ. The
multiplicative inverse of a, call it c, must satisfy ac ≡ 1 (mod n). However, we can use the result of
D&F Exercise 0.3.12 to conclude that c only exists if (a, n) = 1. So, if all elements of Z/nZ are to have
multiplicative inverses, n must be relatively prime to all integers a in the range 0 ≤ a < n, i.e., n must
be prime. Therefore, if n is not prime, then Z/nZ cannot be a field.

D&F Exercise 1.4.5

Let F be a field and n ∈ Z+. Show that GLn(F ) is a finite group if an only if F has a finite number of elements.

Let F be a field and n ∈ Z+. We will show that GLn(F ) is a finite group if an only if F has a finite
number of elements. First, if F is finite, then there can only be a finite number of matrices of size n× n
that contain elements in F , so GLn(F ) must be a finite group.

Conversely, we will show that if GLn(F ) is a finite group, then |F | is finite. To do this, we will prove
the contrapositive: if |F | is infinite, then GLn(F ) is an infinite group. To begin, assume |F | is infinite and
consider the identity element of GLn(F ), i.e., 1. Let a ∈ F , where a ̸= 0. Then a1 ∈ GLn(F ) because
a1 is invertible. Since there are an infinite number of such elements a, then there are an infinite number
of such elements a1 ∈ GLn(F ). Therefore, GLn(F ) is an infinite group.

D&F Exercise 1.4.6

Let F be a field and let n ∈ Z+. If |F | = q is finite prove that |GLn(F )| < qn
2

.

Let F be a field and let n ∈ Z+. We will show that if |F | = q is finite, then |GLn(F )| < qn
2
. To do

this, we can use the fact stated in D&F Sec. 1.4 that if F is a field, n ∈ Z+, and |F | = q < ∞, then
|GLn(F )| = (qn−1)(qn−q)(qn−q2) · · · (qn−qn−1). Since q > 0, we can note the inequality (qn−qa) < qn,
for 0 ≤ a < n. So,

|GLn(F )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) < (qn)n = qn
2
. (47)

Therefore, |GLn(F )| < qn
2
.
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D&F Exercise 1.4.7

Let p be prime. Prove that the order of GL2(Fp) is p
4 − p3 − p2 + p (do not just quote the order formula in this

section). [Subtract the number of 2×2 matrices which are not invertible from the total number of 2×2 matrices
over Fp. You may use the fact that a 2 × 2 matrix is not invertible if and only if one row is a multiple of the
other.]

Let p be prime. We will prove that the order of GL2(Fp) is p
4 − p3 − p2 + p. To do so, we will count

the total number of 2 × 2 matrices with entries in Fp, then subtract the number of such matrices that
are not invertible. Specifically, we use the fact that a 2 × 2 matrix is not invertible if and only if one
row is a multiple of the other. To begin, we can note that there are a total of p4 2 × 2 matrices whose
matrix elements are elements of Fp. In order to found the number of non-invertible 2 × 2 matrices, we
will consider the following cases:

• Matrices of the form: (
a b

ca cb

)
(48)

where a, b, c ∈ Fp and a, b, c ̸= 0. Since a, b and c can take on p− 1 values each, there are (p− 1)3

such matrices.

• Matrices of the form: (
0 a

0 ca

)
(49)

where a, c ∈ Fp and a, c ̸= 0. Since a and c can each take on p− 1 values, there are (p− 1)2 such
matrices.

• Matrices of the form: (
a 0

ca 0

)
(50)

where a, c ∈ Fp and a, c ̸= 0. Since a and c can each take on p− 1 values, there are (p− 1)2 such
matrices.

• Matrices of the form: (
0 0

a b

)
(51)

where a, b ∈ Fp. Since a and b can each take on p values, there are p2 such matrices.

• Matrices of the form: (
a b

0 0

)
(52)

where a, b ∈ Fp. Since a and b can each take on p values, there are p2 such matrices.

All of these matrix categories are disjoint, with one exception: the last two categories both contain the
matrix of all zeros. So, when subtracting the number of non-invertible matrices in the above categories,
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one will have to add back in the matrix with all zero entries, since it is counted twice. The total number
of elements of GLn(Fp) is:

p4 − (p− 1)3 − 2(p− 1)2 − 2p2 + 1 = p4 − p3 − p2 + p, (53)

as desired.

D&F Exercise 1.4.11

The Heisenberg group over a field F is defined as

H(F ) =


 1 a b

0 1 c

0 0 1

∣∣∣∣∣a, b, c ∈ F

 , (54)

and let X and Y be elements of H(F ), where

X =

 1 a b

0 1 c

0 0 1

 , Y =

 1 d e

0 1 f

0 0 1

 . (55)

(a) Compute the matrix product XY and deduce that H(F ) is closed under matrix multiplication. Exhibit explicit
matrices such that XY ̸= Y X (so that H(F ) is always non-abelian).

(b) Find an explicit formula for the matrix inverse X−1 and deduce that H(F ) is closed under inverses.

(c) Prove the associative law for H(F ) and deduce that H(F ) is a group of order |F |3. (Do not assume that
matrix multiplication is associative.)

(d) Find the order of each element of the finite group H(Z/2Z).

(e) Prove that every nonidentity element of the group H(R) has infinite order.

(a) The matrix product XY is

XY =

 1 a b

0 1 c

0 0 1


 1 d e

0 1 f

0 0 1

 =

 1 a+ d e+ af + b

0 1 f + c

0 0 1

 (56)

Here, H(F ) is closed under matrix multiplication since a+ c ∈ F , e+ af + b ∈ F , and f + c ∈ F .
Finally, H(F ) is always non-abelian, since for any field F , 1 1 0

0 1 1

0 0 1

 ,

 1 0 0

0 1 1

0 0 1

 ∈ H(F ), (57)

and yet  1 1 0

0 1 1

0 0 1


 1 0 0

0 1 1

0 0 1

−

 1 0 0

0 1 1

0 0 1


 1 1 0

0 1 1

0 0 1

 =

 0 0 1

0 0 0

0 0 0

 ̸= 0. (58)
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(b) An explicit formula for X−1 is

X−1 =

 1 −a ac− b

0 1 −c
0 0 1

 (59)

It is straightforward to verify that X−1X = 1. Since −a, ac− b,−c ∈ F , then H(F ) is closed under
inverses.

(c) I’m skipping the solution that shows H(F ) is associative, since it’s a bit laborious. However, it is
straightforward to prove that |H(F )| = |F |3. To show this, we can note that there are three matrix
elements in each element of H(F ) that can each take on |F | values. If |F | is finite, then there are
|F |3 such matrices, and |H(F )| = |F |3.

(d) There are 8 elements of |H(F2)|. To save space, define

H(a, b, c) :=

 1 a b

0 1 c

0 0 1

 (60)

Then

g ∈ H(F ) |g|
H(0, 0, 0) 1

H(1, 0, 0) 2

H(0, 1, 0) 2

H(0, 0, 1) 2

H(1, 1, 0) 2

H(1, 0, 1) 4

H(0, 1, 1) 2

H(1, 1, 1) 4

(61)

(e) We will prove that any nonidentity element of the group H(R) has infinite order. To begin, let
a, b, c ∈ R − {0} and

g =

 1 a b

0 1 c

0 0 1

 ∈ H(R). (62)

We then claim the following for n ∈ Z+:

gn =

 1 a b

0 1 c

0 0 1


n

=

 1 na nb+ n(n− 1)ac/2

0 1 nc

0 0 1

 ∈ H(R). (63)

Given this, we can conclude gn ̸= 1 for all n ∈ Z+, and therefore, all non-identity elements of H(R)
have infinite order. All that is remains is to prove Eq. (63). To do so, we will proceed by induction.
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The base case is when n = 1, and 1 a b

0 1 c

0 0 1

 =

 1 a b+ (1− 1)ac/2

0 1 nc

0 0 1

 , (64)

as desired. Let k ∈ Z+, and assume that

gk =

 1 a b

0 1 c

0 0 1


k

=

 1 ka kb+ k(k − 1)ac/2

0 1 kc

0 0 1

 . (65)

We aim to prove that the result holds for k + 1. That is, we wish to show that

gk+1 =

 1 a b

0 1 c

0 0 1


k+1

=

 1 (k + 1)a (k + 1)b+ (k + 1)kac/2

0 1 (k + 1)c

0 0 1

 . (66)

To do this, we begin with the expression on the left, and we apply the induction hypothesis to the
matrix multiplication, and after multiplying the matrices we get the result on the right:

gk+1 = gkg =

 1 ka kb+ k(k − 1)ac/2

0 1 kc

0 0 1


 1 a b

0 1 c

0 0 1

 =

 1 (k + 1)a (k + 1)b+ (k + 1)kac/2

0 1 (k + 1)c

0 0 1

 ,(67)

as desired. Therefore, by induction,

gn =

 1 a b

0 1 c

0 0 1


n

=

 1 na nb+ n(n− 1)ac/2

0 1 nc

0 0 1

 . (68)

VIII. SUBGROUPS: DEFINITION AND EXAMPLES

D&F Exercise 2.1.2

In each (a) - (e) prove that the specified subset is not a subgroup of the given group:

(a) the set of 2-cycles in Sn for n ≥ 3

(b) the set of reflections in D2n for n ≥ 3

(c) for n a composite integer > 1 and G a group containing an element of order n, the set {x ∈ G
∣∣|x| = n}∪{1}

(d) the set of (positive and negative) odd integers in Z together with 0

(e) the set of real numbers whose square is a rational number (under addition).

(a) The set of 2-cycles in Sn for n ≥ 3 is not a subgroup of Sn. This is because this set does not
contain the identity of Sn, since the identity is a 1-cycle, not a 2-cycle.

(b) The set of reflections in D2n for n ≥ 3 is not a subgroup of D2n. This is because this set does not
contain the identity of D2n, since the identity is not a reflection.
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(c) For a group G and composite integer n > 1, the set {x ∈ G
∣∣|x| = n} ∪ {1} is not a subgroup of

G. This is because the set is not closed under multiplication. For example, consider the element x
of the set in question, where |x| = n, and n is composite such that n = ab, where a, b ∈ Z+ and
1 < a ≤ b < n. Multiplying x by itself a times, we obtain the element xa. Note that xa ̸= 1, since
a < n. Now, (xa)b = xab = xn = 1, so |xa| ≤ b. However, b < n, so |xa| < n, which means xa is not
a part of the set {x ∈ G

∣∣|x| = n} ∪ {1}, and therefore this set is not closed under multiplication.

(d) The set of odd integers together with 0 is not a subgroup of (Z,+). This is because the set is not
closed under addition. To show this, consider the odd integer 1. Adding 1 to itself yields 1+1 = 2,
which is not an odd integer, therefore the set is not closed under addition.

(e) The set of real numbers whose square is a rational number (under addition) is not a group. This is
because the set is not closed under addition. To show this, consider two elements x and y of this
set: x =

√
2 and y = 1. Adding these elements yields x+ y =

√
2+1. However, the square of x+ y

is not a rational number, i.e., (x+ y)2 = x2 + y2 + 2xy = 3 + 2
√
2, so this set is not closed under

addition.

D&F Exercise 2.1.3

Show that the following subsets of the dihedral group D8 are actually subgroups: (a) {1, r2s, sr2}, (b)
{1, r2, sr, sr3}.

(a) We can use the Subgroup Criterion to verify that the subset H = {1, r2s, sr2}, where |r| = 4, is a
subgroup of D8:

x ∈ H y ∈ H xy−1 yx−1

r2s r2s 1 1

r2s sr2 1 1

sr2 sr2 1 1

(69)

where trivial multiplications with the identity were removed for brevity. Since all elements in the
xy−1 and yx−1 columns are all elements of H, therefore H is a subgroup of D8.

(b) We can use the Subgroup Criterion to verify that the subset H = {1, r2, sr, sr3} is a subgroup of
D8:

x ∈ H y ∈ H xy−1 yx−1

r2 r2 1 1

r2 sr sr3 sr3

r2 sr3 sr sr

sr sr 1 1

sr sr3 r2 r2

sr3 sr3 1 1

(70)

where trivial multiplications with the identity were removed for brevity. Since all element sin the
xy−1 and yx−1 columns are all elements of H, therefore H is a subgroup of D8.
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D&F Exercise 2.1.4

Give an explicit example of a group G and an infinite subset H of G that is closed under the group operation
but is not a subgroup of G.

Let G = (R,×) and consider the set H = Z − {0} under multiplication. Here, H is a subset of G,
and H is closed under multiplication. However, H is not closed under inverses. For example, consider
the element x = 2 in H. Since there is no element y ∈ H where xy = 1, then the set is not closed under
inverses, and it is not a subgroup of G.

D&F Exercise 2.1.5

Prove that G cannot have a subgroup H with |H| = n− 1, where n = |G| > 2.

Let G be a group where |G| > 2, and let H be a subset of G, where |H| = n− 1. We will show that
H cannot be a subgroup of G. We will proceed by contradiction. Assume that H is a subgroup of G.
Because |G| = n and |H| = n − 1, let x ∈ G be the single element not contained in H. Let h be any
non-identity element in H. Such an element h is guaranteed to exist, since n > 2.

We will now show that xh /∈ H by way of contradiction. Assume xh ∈ H. If xh were in H, then
(xh)h−1 ∈ H, since both xh and h−1 would be inH. However, (xh)h−1 = x /∈ H, which is a contradiction.
Therefore, xh /∈ H.

However, if xh /∈ H, then there is only one such element left in G: x itself. So then xh = x, which
implies h can only be the identity element. But we assumed h is a nonidentity element of H, So this is a
contradiction. Therefore, H is not a subgroup of G.

D&F Exercise 2.1.6

Let G be an abelian group. Prove that {g ∈ G
∣∣|g| < ∞} is a subgroup of G (called the torsion subgroup of G).

Given an explicit example where this set is not a subgroup when G is non-abelian.

Let G be an abelian group. We will prove that a set H = {g ∈ G
∣∣|g| <∞} is a subgroup of G. To do

this, we will consider different cases:

• H contains only the identity of G. Here, H is a trivial subgroup of G.

• |H| ≥ 2. Let x, y ∈ H, where |x| = n and |y| = m are finite. This implies xn = 1 and y−m = 1.
Because G is abelian, we can note the following relation: 1 = (xn)m(y−m)n = (xy−1)nm, which
implies |xy−1| ≤ nm <∞, so xy−1 ∈ H. Since x and y were arbitrary, then H is a subgroup of G
according to the Subgroup Criterion.

D&F Exercise 2.1.7

Fix some n ∈ Z with n > 1. Find the torsion subgroup (cf. the previous exercise) of Z× (Z/nZ). Show that the
set of elements of infinite order together with the identity is not a subgroup of this direct product.

Let n ∈ Z with n > 1. We will show the following results:

(a) The torsion subgroup of G = Z × (Z/nZ) under addition is H = {(0, g)
∣∣g ∈ Z/nZ}. To show

this, we can note that all nonzero integers have infinite order, so any element of G with finite
order must have the form form (0, ...). Furthermore, all elements of Z/nZ have finite order, so
let H = {(0, g)

∣∣g ∈ Z/nZ}. We know H is a subgroup, due to the result in D&F Exercise 2.1.6.
Therefore, H is the torsion subgroup of G.
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(b) Let H be the set of elements of infinite order together with the identity is not a subgroup of G.
Here, H is not a subgroup of G, since it is not closed under addition. To show this, we can note
that g1 = (1, 1) ∈ H and g2 = (−1, 0) ∈ H. However, g1 + g2 = (0, 1), which is of finite order, so it
is not an element of H. Therefore, H is not a subgroup of G.

D&F Exercise 2.1.8

Let H and K be subgroups of G. Prove that H ∪K is a subgroup if and only if either H ⊆ K or K ⊆ H.

Let H and K be subgroups of G. We will prove that H ∪K is a subgroup if and only if either H ⊆ K
or K ⊆ H.

To do this, first assume that H ∪K is a subgroup of G. Consider the following cases:

• If H ⊆ K, then we are done.

• If K ⊆ H, then we are done.

• If K ̸⊆ H and H ̸⊆ K, then this is inconsistent with H ∪K being a subgroup of G. To see why,
we will proceed by contradiction. Assume K ̸⊆ H and H ̸⊆ K, so there are elements x ∈ K and
y ∈ H, but x /∈ H and y /∈ K. Now, the product xy ∈ H ∪K, so xy ∈ H or xy ∈ K. We will now
consider these two cases:

(i) Assume xy ∈ H. Then the product (xy)y−1 must be in H, since xy ∈ H and y−1 ∈ H.
However, (xy)y−1 = x, and x was assumed to not to be in H, which is a contradiction.
Therefore xy /∈ H.

(ii) Assume xy ∈ K. Then the product x−1(xy) must be in K, since xy ∈ K and x−1 ∈ K.
However, x−1(xy) = y, and y was assumed to not to be in K, which is a contradiction.
Therefore xy /∈ K.

From this, xy /∈ K and xy /∈ H, which is a contradiction. So, there are no elements x ∈ K and
y ∈ H such that x /∈ H and y /∈ K. Therefore, the case when K ̸⊆ H and H ̸⊆ K is inconsistent
with H ∪K being a subgroup of G.

Therefore, if H ∪K is a subgroup of G, then either H ⊆ K or K ⊆ H.
Conversely, assume that either H ⊆ K or K ⊆ H. If so, then either H ∪K = K or K ∪H = H, and

since K and H are both subgroups, then H ∪K is also a subgroup.

D&F Exercise 2.1.12

Let A be an abelian group and fix some n ∈ Z. Prove that the following sets are subgroups of A:

(a) {an|a ∈ A}
(b) {a ∈ A|an = 1}.

Let A be an abelian group, and fix some n ∈ Z. We will prove that the following sets are subgroups
of A:

(a) Let H = {an|a ∈ A}. To show that H is a subgroup of A, we can first note that the identity of A,
i.e., 1 ∈ A, is contained in H, since 1 = 1n ∈ H. Next, let x, y ∈ H. This means x = an and y = bn

for some a, b ∈ A. Now, consider the element xy−1. Here, xy−1 = an(bn)−1 = an(b−1)n = (ab−1)n.
The last equality is due to the fact that A is abelian. Because (ab−1)n is an n’th power, then
(ab−1)n ∈ H, so therefore (ab−1)n = xy−1 ∈ H. According to the Subgroup Criterion, H is a
subgroup of A.
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(b) Let H = {a ∈ A|an = 1}. To show that H is a subgroup of A, we can first note that the
identity of A, i.e., 1 ∈ A, is contained in H, since 1 = 1n ∈ H. Now, let a, b ∈ H. This means
an = bn = 1. Now, consider the element ab−1 ∈ A. By raising this element to the power n, we
have (ab−1)n = an(bn)−1 = 1, because A is abelian. But since (ab−1)n = 1, then ab−1 ∈ H, by
definition, and according to the Subgroup Criterion, H is a subgroup of A.

D&F Exercise 2.1.13

Let H be a subgroup of the additive group of rational numbers with the property that 1/x ∈ H for every nonzero
element x of H. Prove that H = 0 or Q.

Let H be a subgroup of the additive rational numbers with the property that 1/x ∈ H for every
nonzero element x of H. Here, H ⊆ Q, by definition. We will prove that H = 0 or Q.

First, if H only contains 0, i.e., the identity of G, then H is the trivial subgroup of G, and we are
done.

Next, assume that H does not only contain the identity. We will prove that Q ⊆ H. To do this, we
will use the following result:

(i) Let x be an element of H and n be an integer. Then nx ∈ H. If x is the identity element, then
this result is trivial, since n · 0 = 0 ∈ H for any n ∈ Z. If n = 0, then the result is also trivial, since
0 · x = 0 ∈ H for any x ∈ H. If x is a nonidentity element of H and n is nonzero, then we can
consider the following two cases:

• n > 0. Here, we can add the element x to itself n times, yielding the element nx. Since H is
closed under addition, then nx ∈ H.

• n < 0. Here, we can subtract the element x to itself |n| times, yielding the element −|n|x.
Since H is closed under inverses, then −|n|x = nx ∈ H.

Therefore, nx ∈ H.

First we will show that 1 ∈ H. To do this, let x ∈ H. Because H contains only rational numbers, then
x = a/b, where a, b ∈ Z, where a ̸= 0 and b ̸= 0. According to (i), then bx = b(a/b) = a ∈ H. By the
definition of H, then 1/a ∈ H. Using (i) again, a(1/a) = 1 ∈ H.

Next, we will show that any nonzero rational number q is contained in H. Here, q = c/d, where
c, d ∈ Z and c ̸= 0 and d ̸= 0. Since 1 ∈ H, we can use (i) to conclude that d · 1 = d ∈ H. Then 1/d ∈ H,
by definition. Using (i) again, c(1/d) = c/d = q ∈ H. So, for all nonzero q ∈ Q, then q ∈ H. Since H
also contains 0, therefore Q ⊆ H.

We have shown Q ⊆ H, and since H ⊆ Q by definition, then H = Q.

D&F Exercise 2.1.14

Show that {x ∈ D2n|x2 = 1} is not a subgroup of D2n (here n ≥ 3).

Let n ≥ 3. We will show that H = {x ∈ D2n|x2 = 1} is not a subgroup of D2n. To begin, we will
consider two elements of D2n: s and srn−1. Both of these elements square to unity, i.e., s2 = 1 and
(srn−1)2 = (srn−1)(srn−1) = srn−1r−(n−1)s = s2 = 1, so both elements are members of H. However,
their product (s)(srn−1) = rn−1 is not in H since its does not square to unity, i.e., (rn−1)2 = r2(n−1) =
r2nr−2 = r−2 = rnr−2 = rn−2 ̸= 1. Therefore, H is not closed under multiplication, and H cannot be a
subgroup of D2n.
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IX. HOMOMORPHISMS AND ISOMORPHISMS

D&F Exercise 1.6.1

Let G and H be groups, and let φ : G→ H be a homomorphism.

(a) Prove that φ(xn) = φ(x)n for all n ∈ Z+.

(b) Do part (a) for n = −1 and deduce that φ(xn) = φ(x)n for all n ∈ Z.

Let G and H be groups, and let φ : G→ H be a homomorphism.

(a) We will use induction to prove that φ(xn) = φ(x)n for all n ∈ Z+. The base case is when n = 1,
so φ(x) = φ(x), as desired. Next, let k ∈ Z+, and assume that φ(xk) = φ(x)k. We aim to prove
that the result holds for k + 1. That is, we wish to show that φ(xk+1) = φ(x)k+1. To do this, we
begin with the induction hypothesis, φ(xk) = φ(x)k, and multiply by φ(x) on both sides on the
right, yielding φ(xk)φ(x) = φ(x)k+1. The left hand side of this equation can be further simplified
using the fact that φ is a homomorphism, so φ(xk)φ(x) = φ(xk+1). Using this, then we have the
relation φ(xk+1) = φ(x)k+1, as desired. Therefore, by induction, φ(xn) = φ(x)n for all n ∈ Z+.

(b) We will prove that when n = −1, then φ(x−1) = φ(x)−1, and from this deduce that φ(xn) = φ(x)n

for all n ∈ Z. To begin, we will denote the identities for groups G and H as 1G and 1H , respectively.
Because φ is a homomorphism, φ(1G)φ(1G) = φ(1G), which implies φ(1G) = 1H . Letting x ∈ G,
we then have 1H = φ(1G) = φ(x−1x) = φ(x−1)φ(x), so we can conclude that φ(x−1) = φ(x)−1, as
desired. From here, we can raise both sides of the equation to the power n ∈ Z+, i.e., φ(x−1)n =
φ(x)−n, and use the result from part (a) to conclude φ(x−n) = φ(x)−n. Therefore, φ(xn) = φ(x)n

for all n ∈ Z.

D&F Exercise 1.6.2

If φ : G→ H is an isomorphism, prove that |φ(x)| = |x| for all x ∈ G. Deduce that any two isomorphic groups
have the same number of elements of order n for each n ∈ Z+. Is the result true if φ is only assumed to be a
homomorphism?

Let φ : G→ H be an isomorphism. We will show the following three results:

(a) |φ(x)| = |x| for all x ∈ G. To show this, we need to first prove the following two results:

(i) Let ϕ : G → H be a homomorphism. Let 1G be the identity of G and 1H be the identity of
H. We will show that ϕ(1G) = 1H . To do this, note ϕ(1G) = ϕ(1G1G) = ϕ(1G)ϕ(1G), which
implies ϕ(1G) = 1H .

(ii) Let ϕ : G→ H be an isomorphism, x ∈ G, and let 1G and 1H denote the identity elements of
G and H, respectively. Then ϕ(x) = 1H if and only if x = 1G. To show this, assume x = 1G.
Then by (i), ϕ(x) = 1H . Conversely, if ϕ(x) = 1H , then we can immediately conclude that
x = 1G, because φ is a bijection, so there is only one element in G that gets mapped to 1H ,
and we already showed that it was 1G.

Let x ∈ G, |x| = n, and let 1G and 1H denote the identity elements of G and H, respectively.
Using the result from D&F Exercise 1.6.1, then we can claim φ(xn) = φ(x)n. Since xn = 1G, and
using the line of reasoning in (i), φ(xn) = φ(1G) = 1H . So, 1H = φ(x)n, and from this we can say
|φ(x)| ≤ n. We will now show that indeed |φ(x)| = n by way of contradiction. Suppose |φ(x)| = k,
where 1 ≤ k < n. So, φ(x)k = 1H , and because φ(x)k = φ(xk), then φ(xk) = 1H . Using the
result from (i), we can conclude that xk = 1G, but this is a contradiction, since k < n and n is the
smallest integer such that xn = 1G. Therefore, |φ(x)| = n, and |φ(x)| = |x|.
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(b) Any two isomorphic groups have the same number of elements of order n for each n ∈ Z+. This
follows from (a), since there is a bijective mapping between the elements of G and the elements of
H.

(c) The result in (b) does not hold if φ is only assumed to be a homomorphism. To show this, consider
the trivial map φ : G→ H, where ϕ(G) = 1H . Here, for x, y ∈ G, we have φ(x) = 1H , φ(y) = 1H ,
and φ(xy) = 1H , so φ(xy) = φ(x)φ(y), which implies φ is indeed a homomorphism. However, φ
is not an isomorphism, because φ is not a bijection between the elements of G and H. So, given
that φ is a homomorphism but not an isomorphism, we can now see why (b) does not hold, since
|φ(x)| = 1 for all x ∈ G, despite the possibility that x has order greater than one.

D&F Exercise 1.6.3

If φ : G → H is an isomorphism, prove that G is abelian if and only if H is abelian. If φ : G → H is a
homomorphism, what additional conditions on φ (if any) are sufficient to ensure that if G is abelian, then so is
H?

We will show the following two results:

(a) Let φ : G → H be an isomorphism. Then G is abelian if and only if H is abelian. To show this,
first assume G is abelian. Let a, b ∈ H. Since φ is a bijection, then there are unique elements
x, y ∈ G such that a = φ(x) and b = φ(y). Because φ is a homomorphism and G is abelian, we
have ab = φ(x)φ(y) = φ(xy) = φ(yx) = φ(y)φ(x) = ba. Therefore, H is abelian.

Conversely, assume H is abelian. Here, let x, y ∈ G. Then we can evaluate φ(xy) = φ(x)φ(y) =
φ(y)φ(x) = φ(yx). Since φ is injective, the fact that φ(xy) = φ(yx) implies xy = yx, so G is
abelian.

We conclude that G is abelian if and only if H is abelian.

(b) Let φ : G → H be a homomorphism where G is abelian. Only the additional requirement that
φ is surjective is sufficient to conclude that H is also abelian. To show this, let a, b ∈ H. Then,
since φ is surjective, the preimages φ−1(a) and φ−1(b) are non-empty sets. So, let x ∈ φ−1(a)
and y ∈ φ−1(b). Since G is abelian, xy = yx. This implies φ(xy) = φ(yx), and since φ is a
homomorphism, then φ(xy) = φ(x)φ(y) and φ(yx) = φ(y)φ(x), so therefore φ(x)φ(y) = φ(y)φ(x).
Since φ(x) = a and φ(y) = b, this means ab = ba. Therefore H is abelian.

D&F Exercise 1.6.6

Prove that the additive groups Z and Q are not isomorphic.

We will prove that the additive groups Z and Q are not isomorphic. To show this, we will proceed by
way of contradiction. Assume φ : Q → Z is an isomorphism. We will note the following result:

(i) φ(1) = 0. To show this, let φ(1) = n, where n ∈ Z. However, because φ is a homomorphism, we
have n = φ(1) = φ(12 + 1

2) = φ(12) + φ(12), so n = 2φ(12), which implies 2|n. Again, n = φ(1) =
φ(13 +

1
3 +

1
3) = φ(13)+φ(

1
3)+φ(

1
3), so n = 3φ(13), which implies 3|n. This process can be repeated

in order to conclude that all positive integers divide n. The only integer for which is this true is
n = 0. This is true since if |n| > 1, there is always an integer larger in magnitude than n that does
not divide n. So, only n = 0 satisfies k|n, where k ∈ Z.

Therefore, φ(1) = 0.
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Using (i), we have φ(1) = 0. But using the line of reasoning in the solution to D&F Exercise 1.6.2, we
also have φ(0) = 0. But then φ is not injective, so φ is not bijective, and φ cannot be a isomorphism,
which is a contraction. Therefore, the additive groups Z and Q are not isomorphic.

D&F Exercise 1.6.7

Prove that D8 and Q8 are not isomorphic.

The groups D8 and Q8 are not isomorphic. To show this, we note the results from D&F Exercise
1.6.2(b), which claims that if two groups are isomorphic, they have the same number of elements with
the same order. Here, Q8 only has one element of order 2, i.e., −1. But D8 has multiple elements of
order 2, e.g., r2 and s are two examples. Since there are not the same number of elements with the same
order, D8 and Q8 are not isomorphic.

D&F Exercise 1.6.9

Prove that D24 and S4 are not isomorphic.

The groups D24 and S4 are not isomorphic. To show this, we note the results from D&F Exercise
1.6.2(b), which claims that if two groups are isomorphic, they have the same number of elements with
the same order. Here, D24 has an element that is order 12, i.e., r. But there are no elements in S4 that
have order 12 (see D&F Exercise 1.3.4(b)). Since there are not the same number of elements with the
same order, D24 and S4 are not isomorphic.

D&F Exercise 1.6.11

Let A and B be groups. Prove that A×B ∼= B ×A.

Let A and B be groups. We will prove that A × B ∼= B × A. We do this by proving that the map
φ : A×B → B×A where φ(a, b) = (b, a) is an isomorphism for a ∈ A and b ∈ B. First, we will show that
φ is a homomorphism. Let a, c ∈ A and b, d ∈ B. We can note that combination rule (a, b)(c, d) = (ac, bd),
so φ((a, b)(c, d)) = φ(ac, bd) = (bd, ac) = (b, a)(d, c) = φ(a, b)φ(c, d), so φ is indeed a homomorphism.
Second, we will show that φ is a bijection. Here, φ is surjective, since for any element (b, a) ∈ B×A, there
is a corresponding element in A×B, namely (a, b), such that φ(a, b) = (b, a). Also, φ is injective, since if
φ(a, c) = φ(b, d), this implies (a, c) = (b, d). Since φ is both injective and surjective, then it is bijective.
Therefore, since φ is a homomorphism and bijective, then it is an isomorphism, i.e., A×B ∼= B ×A.

D&F Exercise 1.6.13

Let G and H be groups and let φ : G→ H be a homomorphism. Prove that the image of φ, φ(G), is a subgroup
of H. Prove that if φ is injective then G ∼= φ(G).

Let G and H be groups and let φ : G→ H be a homomorphism and φ(G) be the image of φ. We will
show the following two results:

(a) The image of φ is a subgroup of H. To begin, we can note that φ(G) contains the identity of H,
since φ is a homomorphism and it maps the identity of G to the identity of H (cf D&F Exercise
1.6.1).

Next, let x, y ∈ φ(G). We will show xy−1 ∈ φ(G). Since φ is surjective, let a ∈ φ−1(x) and
b ∈ φ−1(y). Now, since a, b ∈ G, then ab−1 ∈ G, and therefore φ(ab−1) ∈ φ(G). Since φ is
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a homomorphism, φ(ab−1) = φ(a)φ(b−1) = φ(a)φ(b)−1 = xy−1. Since φ(ab−1) ∈ φ(G), then
xy−1 ∈ φ(G).

Therefore, according to the Subgroup Criterion, φ(G) is a subgroup of H.

(b) If φ is injective then G ∼= φ(G). To show this, define the restricted homomorphism f : G→ φ(G).
Here, f is surjective, by definition. But if φ is injective, then so is f . Therefore, f is both a
bijection and a homomorphism, so there is an isomorphism between G and φ(G), i.e., G ∼= φ(G).

D&F Exercise 1.6.14

Let G and H be groups and let φ : G→ H be a homomorphism. Define the kernel of φ to be {g ∈ G|φ(g) = 1H}
(so the kernel is the set of elements in G which map to the identity of H, i.e., is the fiber over the identity of
H). Prove that the kernel of φ is a subgroup of G. Prove that φ is injective if and only if the kernel of φ is the
identity subgroup of G.

Let G and H be groups and let φ : G→ H be a homomorphism. We will show the following results:

(a) The kernel of φ is a subgroup of G. Let x, y ∈ kerφ, i.e., φ(x) = φ(y) = 1H . We will show that
xy−1 is also in the kernel of φ, so we can conclude that kerφ is a subgroup of G by using the
Subgroup Criterion.

First, we can note that because 1H = φ(y)φ(y)−1 = φ(y)φ(y−1), and since φ(y) = 1H , then
φ(y−1) = 1H . So, y−1 ∈ kerφ. We can use this result to also note that because φ is a homomor-
phism 1H = φ(x)φ(y−1) = φ(xy−1), and therefore xy−1 ∈ kerφ. Since x and y were arbitrary,
then according to the Subgroup Criterion, kerφ is a subgroup of G.

(b) The map φ is injective if and only if the kernel of φ is the identity subgroup of G.

To show this, first assume φ is injective. We will show that kerφ = 1G. Because φ is injective,
there can be at most one element of G that gets mapped on to 1H , and we have shown in D&F
Exercise 1.6.1 that if φ is a homomorphism, that such an element must exist, namely 1G. Therefore,
kerφ = 1G.

Conversely, assume kerφ = 1G, and let x, y ∈ G. We will show that if φ(x) = φ(y), then x = y,
i.e., φ is injective. To begin, assume φ(x) = φ(y) = h. Then we have 1H = hh−1 = φ(x)φ(y)−1 =
φ(x)φ(y−1) = φ(xy−1). So, we have deduced 1H = φ(xy−1). Because kerφ = 1G, then xy

−1 = 1G,
which implies x = y. So, if φ(x) = φ(y), then this implies x = y for all x, y ∈ G, and therefore φ
is injective.

D&F Exercise 1.6.17

Let G be any group. Prove that the map from G to itself defined by g 7→ g−1 is a homomorphism if and only if
G is abelian.

Let G be any group and φ : G → G where φ(g) = g−1 for g ∈ G. We will show that φ is a
homomorphism if and only if G is abelian.

First, assume φ is a homomorphism. We will show that G is abelian. Let x, y ∈ G. Because φ
is a homomorphism, φ(x)φ(y) = φ(xy), which implies x−1y−1 = (xy)−1. But (xy)−1 = y−1x−1, so
x−1y−1 = y−1x−1, i.e., xy = yx. Therefore G is abelian.

Conversely, assume G is abelian. We will show that φ is a homomorphism. Let x, y ∈ G. Since G is
abelian, x−1y−1 = y−1x−1. But y−1x−1 = (xy)−1, so x−1y−1 = (xy)−1, which implies φ(x)φ(y) = φ(xy).
Therefore φ is a homomorphism.
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D&F Exercise 1.6.20

Let G be a group and let Aut(G) be the set of all isomorphisms from G to G. Prove that Aut(G) is a group under
function composition (called the automorphism group of G and the elements of Aut(G) are called automorphisms
of G).

Let G be a group. We will show that Aut(G) is a group under function composition. To do this, we
must show the following:

• Aut(G) contains an identity. The identity element 1 is the trivial isomorphism G→ G that maps
every element to itself.

• Aut(G) is closed under function composition. This follows from the fact that under function
composition, two isomorphisms φ1, φ2 ∈ Aut(G) form an isomorphism when combined, i.e., (φ1 ◦
φ2) ∈ Aut(G). To show this, we will prove that φ1◦φ2 is both a bijection and a homomorphism. We
can first note that because φ1 and φ2 are both bijections, then φ1◦φ2 is a bijection. To show φ1◦φ2

is a homomorphism, we can note that because φ2 is a homomorphism, then φ2(a)φ2(b) = φ2(ab),
for a, b ∈ G. Applying φ1 to both sides of the equation, we have φ1(φ2(a)φ2(b)) = φ1(φ2(ab)).
But since φ1 is also a homomorphism, then φ1(φ2(a)φ2(b)) = φ1(φ2(a))φ1(φ2(b)). Therefore,
φ1(φ2(a))φ1(φ2(b)) = φ1(φ2(ab)), i.e., (φ1 ◦ φ2)(a)(φ1 ◦ φ2)(b) = (φ1 ◦ φ2)(ab), so φ1 ◦ φ2 is an
homomorphism. Because φ1 ◦ φ2 is a bijection and a homomorphism, then it is an isomorphism,
so (φ1 ◦ φ2) ∈ Aut(G), and therefore Aut(G) is closed under function composition.

• Aut(G) is closed under inverses. To show this, let φ ∈ Aut(G). Here, φ is an isomorphism, so it is
a bijection, and therefore it is guaranteed that φ−1 exists and φ−1 is itself a bijection. We want to
prove that φ−1 ∈ Aut(G). Since φ−1 is a bijection, all that remains in order to prove that φ−1 is a
isomorphism (and therefore φ−1 ∈ Aut(G)) is to show that φ−1 is a homomorphism. Let a, b ∈ G.
Define a′ = φ−1(a), b′ = φ−1(b), and (ab)′ = φ−1(ab), where a′, b′, (ab)′ ∈ G. Equivalently,
φ(a′) = a, φ(b′) = b, and φ((ab)′) = ab. Since φ is a homomorphism, φ(a′)φ(b′) = φ(a′b′). But this
implies ab = φ(a′b′). But then we have both φ(a′b′) = ab and φ((ab)′) = ab, so φ(a′b′) = φ((ab)′).
Since φ is injective, this implies that a′b′ = (ab)′. Expressing this equation in terms of φ−1, it
becomes φ−1(a)φ−1(b) = φ−1(ab), so therefore φ−1 is a homomorphism, as desired. Therefore,
Aut(G) is closed under inverses.

• Aut(G) is associative. This follows from the associativity of function composition.

Therefore, Aut(G) is a group under function composition.

D&F Exercise 1.6.23

Let G be a finite group which possesses an automorphism σ (cf. Exercise 20) such that σ(g) = g if and only if
g = 1. If σ2 is the identity map from G to G, prove that G is abelian (such an automorphism σ is called fixed
point free of order 2). [Show that every element of G can be written in the form x−1σ(x) and apply σ to such
an expression.]

Let G be a finite group which possesses an automorphism σ with the property that σ(g) = g if and
only if g = 1. We will show that if σ2 is the identity map from G to G, then G is abelian. To do this, we
will first prove two smaller results:

(i) Any element a ∈ G can be written as a = x−1σ(x), where x ∈ G. To prove this statement, it is
sufficient to prove that the map φ : G→ G where φ(x) = x−1σ(x) is an a bijection.

To prove this, we will first show that φ is injective, i.e., if φ(x) = φ(y) then x = y for any x, y ∈ G.
Suppose φ(x) = φ(y). By the definition of φ, then this implies x−1σ(x) = y−1σ(y). Multiplying on
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the left by x, we have σ(x) = xy−1σ(y). Acting on both sides by σ, and noting that σ(σ(x)) = x
and that σ is a homomorphism, we then have x = σ(xy−1)y. Multiplying both sides on the right
by y−1, we have xy−1 = σ(xy−1). Since σ is fixed point free of order 2, this implies that xy−1 = 1,
i.e., x = y. Therefore, φ is injective. Finally, we note that any injective map from a finite group
to itself is also a bijection.

[Note: we have not proved that φ is an homomorphism. We only know that for any element a ∈ G,
there is a unique x ∈ G such that a = φ(x) = x−1σ(x). At this point, it is unknown whether φ
preserves the group structure.]

(ii) The automorphism σ maps an element a ∈ G to its inverse, i.e., σ(a) = a−1. To show this, let
a ∈ G, and using (i), we can write a = x−1σ(x), for some x ∈ G. Since σ is a homomorphism and
σ(σ(x)) = x by definition, then σ(a) = σ(x−1σ(x)) = σ(x−1)σ(σ(x)) = σ(x−1)x = σ(x)−1x. So,
σ(a) = σ(x)−1x. Now we can note aσ(a) = x−1σ(x)σ−1(x)x = x−1x = 1. Therefore, σ(a) = a−1.

Let a, b ∈ G. Using (ii), we have the identities σ(ab) = (ab)−1 = b−1a−1 and σ(a)σ(b) = a−1b−1. Because
σ is a homomorphism, σ(ab) = σ(a)σ(b), so therefore b−1a−1 = a−1b−1, which is equivalent to ab = ba.
Therefore, G is abelian.

[From here, one could then use the fact that G is abelian to deduce that φ is an homomorphism, and
therefore a isomorphism.]

X. GROUP ACTIONS

D&F Exercise 1.7.1

Let F be a field. Show that the multiplicative group of nonzero elements of F (denoted by F×) acts on the set
F by g · a, where g ∈ F×, a ∈ F and ga is the usual product in F of the two field elements (state clearly which
axioms in the definition of a field are used).

Let F be a field. Consider the map f : F× ×F → F defined as (g, a) 7→ ga, where g ∈ F× and a ∈ F .
To prove that f is a group action, we must show the following two results:

• g1 · (g2 ·a) = (g1g2) ·a, where g1, g2 ∈ F× and a ∈ F . To show this, we can note that because of the
associativity of multiplication in F , we have g1 · (g2 ·a) = g1 · (g2a) = g1(g2a) = (g1g2)a = (g1g2) ·a,
as desired.

• 1 · a = a, where a ∈ F and 1 is the identity of F×. Because the identity of F× is the same as
the multiplicative identity of F , then we have 1 · a = 1a = a, which follows from the axiom of the
multiplicative identity of F .

Therefore, f is a group action.

D&F Exercise 1.7.3

Show that the additive group R acts on the x, y plane R × R by r · (x, y) = (x+ ry, y).

Consider the map f : R×R2 → R2, defined as (r, (x, y)) 7→ (x+ ry, y) where x, y, r ∈ R. We will show
that f is a group action. To do this, we must show the following two results:

• r1 · (r2 · (x, y)) = (r1r2) · (x, y), where r1, r2 ∈ R and (x, y) ∈ R2. To show this, we can note
r1 · (r2 · (x, y)) = r1 · (x + r2y, y) = (x + r1y + r2y, y) = (x + (r1 + r2)y, y) = (r1 + r2) · (x, y), as
desired.
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• 0 · (x, y) = (x, y), where (x, y) ∈ R2 and 0 is the additive identity of R. To show this, we can note
that 0 · (x, y) = (x+ 0y, y) = (x, y), as desired.

Therefore, f is a group action.

D&F Exercise 1.7.4

Let G be a group action on the A and fix some a ∈ A. Show that the following sets are subgroups of G (cf. D&F
Exercise 1.1.26):

(a) the kernel of the action,

(b) {g ∈ G|ga = a} – this subgroup is called the stabilizer of a in G.

Let f be the group action of a group G on A, i.e., f : G × A → A. We will show the following two
results:

(a) Claim: The kernel of f , i.e., ker f = {g ∈ G|g · a = a, for all a ∈ A}, is a subgroup of G.

Proof: We will show that for every a ∈ A, that (1) 1 · a = a, and (2) if x · a = a and y · a = a,
where x, y ∈ G, then xy−1 · a = a. Let a ∈ A. We can first note that since f is a group action,
1 · a = a. Next, suppose x · a = a and y · a = a, where x, y ∈ G. Here, (xy−1) · a = (xy−1) · (y · a) =
x · (y−1 · (y · a)) = x · ((y−1y) · a) = x · (1 · a) = x · a = a, so therefore xy−1 · a = a. According to
the Subgroup Criterion, ker f is a subgroup of G.

(b) Claim: For a fixed element a ∈ A, the stabilizer of a in G, i.e., StabG(a) = {g ∈ G|g · a = a}, is a
subgroup of G.

Proof: We will show that for a fixed a ∈ A, that (1) 1 · a = a, and (2) if x · a = a and y · a = a,
where x, y ∈ G, then xy−1 · a = a. To show this, fix a ∈ A. We can first note that since f
is a group action, 1 · a = a. Next, suppose x · a = a and y · a = a, where x, y ∈ G. Here,
(xy−1) · a = (xy−1) · (y · a) = x · (y−1 · (y · a)) = x · ((y−1y) · a) = x · (1 · a) = x · a = a, so therefore
xy−1 · a = a. According to the Subgroup Criterion, StabG(a) is a subgroup of G.

D&F Exercise 1.7.5

Prove that the kernel of an action of a group G on the set A is the same as the kernel of the corresponding
permutation representation G→ SA.

Let f be a group action of the group G on A, i.e., f : G × A → A, and let φ be the corresponding
permutation representation of the group action φ : G → SA, so g 7→ σg, where g ∈ G and σg is a
permutation on A. The term “corresponding permutation representation” means g · a = σg(a) (cf. D&F
Sec. 1.7, p. 42).

The kernel of f is ker f = {g ∈ G|g ·a = a, for all a ∈ A} and the kernel of φ is kerφ = {g ∈ G|σg(a) =
a, for all a ∈ A}. Since g · a = σg(a), therefore ker f = kerφ.

D&F Exercise 1.7.6

Prove that a group G acts faithfully on a set A if and only if the kernel of the action is the set consisting only
of the identity.

We will prove that a group G acts faithfully on a set A if and only if the kernel of the action is the
set consisting only of the identity. Here, “faithfully” means that distinct elements of G induce distinct
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permutations of A. To show this, let f be the group action f : G×A→ A, and φ be the homomorphism
φ : G→ SA.

First, suppose that f is faithful. We will show that ker f is the set consisting only of the identity. First,
we can note that because f is faithful, then φ maps distinct elements of G to distinct elements of SA,
i.e., φ is injective. Since φ is an injective homomorphism, we can use the result in D&F Exercise 1.6.14
to claim that kerφ = {1}. Then according to D&F Exercise 1.7.5, we can conclude that ker f = {1}.

Conversely, suppose that the ker f contains only the identity. We will show that f is faithful. First,
we can note the result in D&F Exercise 1.7.5, and claim that if ker f = {1}, then kerφ = {1}, and then
use the result from D&F Exercise 1.6.14 to claim that if kerφ = {1}, then φ is injective. This means φ
maps distinct elements in G to distinct elements in SA. Therefore, f is faithful, by definition.

Therefore, a group G acts faithfully on a set A if and only if the kernel of the action is the set consisting
only of the identity.

D&F Exercise 1.7.8

Let A be a nonempty set and let k be a positive integer with k ≤ |A|. The symmetric group SA acts on the set
B consisting of all subsets of A of cardinality k by σ · {a1, · · · , ak} = {σ(a1), · · · , σ(ak)}.

(a) Prove that this is a group action.

(b) Describe explicitly how the elements (12) and (123) act on the six 2-element subsets of {1, 2, 3, 4}.

Let A be a nonempty set and let k be a positive integer with k ≤ |A|. Let B be the set consisting
of all subsets of A of cardinality k by {a1, · · · , ak}. Let f be the map f : SA × B → B defined as
σ · {a1, · · · , ak} 7→ {σ(a1), · · · , σ(ak)}.

(a) The map f is a group action. To show this, we must show the following two results:

• σ1 · (σ2 · {a1, · · · , ak}) = (σ1σ2) · {a1, · · · , ak}, where σ1, σ2 ∈ SA. To show this, we can
note σ1 · (σ2 · {a1, · · · , ak}) = σ1 · {σ2(a1), · · · , σ2(ak)} = {σ1(σ2(a1)), · · · , σ1(σ2(ak))} =
{(σ1σ2)(a1), · · · , (σ1σ2)(ak)} = (σ1σ2) · {a1, · · · , ak}, as desired.

• 1 · {a1, · · · , ak} = {a1, · · · , ak}. To show this, we have 1 · {a1, · · · , ak} = {1(a1), · · · , 1(ak)} =
{a1, · · · , ak}, as desired.

Therefore, this is a group action.



41

(b) The following is how σ = (12) and (123) act on the six 2-element subsets of {1, 2, 3, 4}:

(12) · {1, 2} = {2, 1}
(12) · {1, 3} = {2, 3}
(12) · {1, 4} = {2, 4}
(12) · {2, 3} = {1, 3}
(12) · {2, 4} = {1, 4}
(12) · {3, 4} = {3, 4}
(123) · {1, 2} = {2, 3}
(123) · {1, 3} = {2, 1}
(123) · {1, 4} = {2, 4}
(123) · {2, 3} = {3, 1}
(123) · {2, 4} = {3, 4}
(123) · {3, 4} = {1, 4}

(71)

D&F Exercise 1.7.11

Write out the cycle decomposition of the eight permutations in S4 corresponding to the elements of D8 given by
the action D8 on the vertices of a square (where the vertices of the square are labeled as in Section 2).

Let φ be the homomorphism φ : D8 → S4 associated with the permutation representation of D8 acting
on the vertices of a square. The vertices of the square are labeled in Fig. 1. Here, r is a clockwise rotation
of the square by π/2 radians, and s is a reflection about the line of symmetry through vertex 1 and the
origin. The correspondence between the elements of D8 and S4 are tabulated below:

FIG. 1 The square from Section 1.2



42

g ∈ D8 φ(g) ∈ S4

1 1

r (1234)

r2 (13)(24)

r3 (1432)

s (24)

sr (14)(23)

sr2 (13)

sr3 (12)(34)

(72)

D&F Exercise 1.7.12

Assume n is an even positive integer and show that D2n acts on the set consisting of pairs of opposite vertices
of a regular n-gon. Find the kernel of this action (label vertices as usual).

Consider a regular n-gon, where n is even, and label the vertices of the regular n-gon in clockwise
fashion, beginning with 1, as in the previous problem. The set of containing a vertex label k along with
its opposite partner can be denoted ak := {k, k + n/2}, where 1 ≤ k ≤ n/2. Importantly, the magnitude
of the numerical difference of the two elements in the set ak is always n/2 – this is the definition of
“opposite vertices.” Let A be the set of all such opposite pairs, i.e., A = {a1, a2, · · · , an/2}.

Let f be the map f : D2n×A→ A. Here, r ∈ D2n is defined as a clockwise rotation by 2π/n radians,
and s ∈ D2n is a reflection about the line of symmetry through vertex n and the origin. Here, we will
show explicitly how the elements of D2n act on ak. We will consider two types of elements of D2n: ones
of the form rℓ and ones of the form srℓ, where ℓ ∈ Z in the range 0 ≤ ℓ ≤ n− 1. Elements of D2n act on
elements of A as follows:

rℓ · ak = rℓ · {k, k + n/2} = {k + ℓ, k + ℓ+ n/2} (mod n) = ak+ℓ (mod n) (73)

srℓ · ak = srℓ · {k, k + n/2} = {n− k − ℓ, n− k − ℓ− n/2} (mod n) = an−k−ℓ (mod n) (74)

Here, we are identifying the vertex with label n with the 0 element of Z/nZ. Note that the above actions
on elements of A does not change the fact that they are pairs of opposite vertices. Therefore, the action
of elements of D2n on elements of A induces a permutation of the elements of A, which we can denote as
g · ak = σg(ak), for each g ∈ D2n.

Now we will show that f is a group action. To do so, we can show the following two results:

• g1 · (g2 · ak) = (g1g2) · ak for g1, g2 ∈ D2n and ak ∈ A. To see this, we can note g1 · (g2 · ak) =
g1 · σg2(ak) = σg1(σg2(ak)) = (σg1 ◦ σg2)(ak) = (g1g2) · ak, as desired.

• 1 · ak = ak, for ak ∈ A. This follows from Eq. (73) when ℓ = 0.

Therefore, f is a group action.
Claim: The kernel of the action contains only the identity and rn/2.
Proof: The condition that an element g ∈ G is in the kernel of f is the requirement that g · ak = ak,

for all ak ∈ A. We can use Eqs. (73) and (74) to solve for the elements of G that satisfy this condition.
Using Eq. (73), we have the following condition:

{k + ℓ, k + ℓ+ n/2} ≡ {k, k + n/2} (75)
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which can be satisfied only if ℓ ≡ 0 or ℓ ≡ n/2. Likewise using Eq. (74), we have the following condition:

{n− k − ℓ, n− k − ℓ− n/2} ≡ {k, k + n/2} (76)

for which there is no solution in ℓ. Therefore, ker f = {1, rn/2}.

D&F Exercise 1.7.13

Find the kernel of the left regular action.

Let G be a group. The kernel of the left regular action is defined as {g ∈ G|ga = a, for all a ∈ G}.
The only element that satisfies the requirements for this set is the identity. To show this, let a ∈ G. For
g ∈ G to be in the kernel of the left regular action, this requires ga = a. Multiplying on the right by a−1

on both sides of this equation, we have g = aa−1 = 1. So only g = 1 is in the kernel of the left regular
action.

D&F Exercise 1.7.14

Let G be a group and let A = G. Show that if G is non-abelian then the maps defined by g · a = ag for all
g, a ∈ G do not satisfy the axioms of a (left) group action of G on itself.

Let G be a group and let A = G, and consider the map f : G × A → A, defined as g · a = ag for
g, a ∈ G.

Claim: If G is non-abelian, then f cannot be a (left) group action.
Proof: We will proceed by contradiction. Assume f is a group action. Let g1, g1 ∈ G and a ∈ A. Then

we have g1 · (g2 · a) = (g1g2) · a. Given the definition of the group action, we this implies ag2g1 = ag1g2.
Multiplying on the left by a−1 on both sides of the equation, this yields g2g1 = g1g2. However, this is a
contradiction, since G is non-abelian. Therefore, f is not a (left) group action.

D&F Exercise 1.7.15

Let G by any group and let A = G. Show that the maps defined by g · a = ag−1 for all g, a ∈ G do satisfy the
axioms of a (left) group action of G on itself.

Let G be a group and let A = G, and consider the map f : G × A → A, defined as g · a = ag−1 for
g, a ∈ G. We will show that f is a group action by proving the following two requirements:

• Let g1, g2, a ∈ G. We will show g1 · (g2 · a) = (g1g2) · a. To see this, note g1 · (g2 · a) = g1 · (ag−1
2 ) =

ag−1
2 g−1

1 = a(g1g2)
−1 = (g1g2) · a, as desired.

• 1 · a = a. This follows from the properties of the identity: 1 · a = a1 = a.

Therefore f is a group action.

D&F Exercise 1.7.16

Let G by any group and let A = G. Show that the maps defined by g · a = gag−1 for all g, a ∈ G do satisfy the
axioms of a (left) group action (this action of G on itself is called a conjugation).

Let G be a group and let A = G, and consider the map f : G × A → A, defined as g · a = gag−1 for
g, a ∈ G. We will show that f is a group action by proving the following two requirements:
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• Let g1, g2, a ∈ G. We will show g1 · (g2 ·a) = (g1g2) ·a. To see this, note g1 · (g2 ·a) = g1 · (g2ag−1
2 ) =

g1g2ag
−1
2 g−1 = (g1g2)a(g1g2)

−1 = (g1g2) · a, as desired.

• 1 · a = a. This follows from the properties of the identity: 1 · a = 1a1 = a.

Therefore f is a group action.

D&F Exercise 1.7.17

Let G be a group and let G act on itself by left conjugation, so each g ∈ G maps G to G by x 7→ gxg−1. For
fixed g ∈ G, prove that conjugation by g is an isomorphism from G onto itself (i.e., is an automorphism of G –
cf. D&F Exercise 1.6.20). Deduce that x and gxg−1 have the same order for all x in G and that for any subset
of A of G, |A| = |gAg−1| (here gAg−1 = {gag−1|a ∈ A}).

Let G be a group and let G act on itself by left conjugation, so each g ∈ G maps G to G by x 7→ gxg−1.
We will show the following results:

(a) For fixed g ∈ G, conjugation by g is an isomorphism from G onto itself. To show this, let g ∈ G
be fixed, and let φg be the map φg : G→ G defined by x 7→ gxg−1 for x ∈ G.

First, we will show that φg is a homomorphism. Here, let x1, x2 ∈ G, and we can note
φg(x1x2) = gx1x2g

−1 = gx1(g
−1g)x2g

−1 = (gx1g
−1)(gx2g

−1) = φg(x1)φg(x2). Therefore, φg

is a homomorphism.

Next, we will show that φg is injective. To do this, let x1, x2 ∈ G such that φg(x1) = φg(x2). This
implies gx1g

−1 = gx2g
−1. Multiplying on the right by g and on the left by g−1 on both sides of

the equation, this yields x1 = x2. Therefore, φg is injective.

Finally, we will show that φg is surjective. Let y ∈ G. Then we can always construct the element
x = g−1yg. Solving for y, we have y = gxg−1, i.e., φg(x) = y. Therefore, φg is surjective.

So, since φg is a bijective homomorphism from G to itself, it is therefore an automorphism.

(b) x and gxg−1 have the same order for all x in G. This is the same as D&F Exercise 1.1.22, and the
solution can be found there.

(c) |A| = |gAg−1|, where A be any subset of G and g ∈ G. Here, gAg−1 = {gag−1|a ∈ A}. To show
this, let g ∈ G. From part (a), it was shown that the map G 7→ gGg−1 is bijective, so therefore the
map for any subset A of G, A 7→ gAg−1, will also be a bijection. Therefore, |A| = |gAg−1|.

D&F Exercise 1.7.18

Let H be a group action on a set A. Prove that the relation ∼ on A defined by

a ∼ b if and only if a = hb for some h ∈ H

is an equivalence relation. (For each x ∈ A the equivalence class x under ∼ is called the orbit of x under the
action H. The orbits under the action of H partition the set A.)

Let f : H × A → A be the group action of H acting on the set A. Let a, b ∈ H. We will show that
the relation ∼ on A defined by a ∼ b if and only iff a = hb for some h ∈ H is an equivalence relation. To
do this, we must show the following three results:

• ∼ is reflexive. To see this, let a ∈ A. Since a = 1a, and 1 ∈ H, then ∼ is reflexive.
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• ∼ is symmetric. To see this, let a, b ∈ A where a ∼ b, i.e., a = hb for some h ∈ H. Here, a = hb
implies b = h−1a. Since h−1 ∈ H, then b ∼ a. Therefore, ∼ is symmetric.

• ∼ is transitive. To see this, let a, b, c ∈ A, where a ∼ b and b ∼ c, i.e., a = hb and b = h′c for some
h, h′ ∈ H. We can note a = hb = h(h′c) = (hh′)c, and since hh′ ∈ H, then this implies a ∼ c.
Therefore, ∼ is transitive.

Since ∼ is reflective, symmetric, and transitive, it is therefore an equivalence relation.

D&F Exercise 1.7.19

Let H be a subgroup of a finite group G and let H act on G (here A = G) by left multiplication. Let x ∈ G and
let O be the orbit of x under the action of H. Prove that the map

H → O defined by h 7→ hx

is a bijection (hence all orbits have cardinality |H|). From this and the preceding exercise, deduce Lagrange’s
Theorem:

if G is a finite group and H is a subgroup of G then |H| divides |G|.

Let H be a subgroup of a finite group G and let H act on G by left multiplication. Let x ∈ G and let
Ox be the orbit of x under the action of H.

Let φx be the map φx : H → Ox defined by φx(h) = hx, where h ∈ H. Here, we will show φx is a
bijection. To do this, we will first show that it is injective. Let h1, h2 ∈ H such that φx(h1) = φx(h2).
This implies h1x = h2x, and after multiplying on the right by x−1, we have h1 = h2. Therefore, φx is
injective. Next, we can note that φx is surjective by definition, since Ox is comprised of only elements
that are in the image of φx. Therefore, φx is a bijection.

Since H → Ox is a bijection, we can immediately conclude that |H| = |Ox|. This result holds for any
element x ∈ G. So, all orbits of elements of G under the action of H have the same cardinality, equal to
|H|.

From here, we can use the result in D&F Exercise 1.7.18, which states that the orbits produced by
the action of H on G partition the set. Combined with the result in the previous paragraph, all of these
orbit partitions have the same cardinality, i.e., |H|. Therefore, |H| must divide |G|.

D&F Exercise 1.7.20

Show that the group of rigid motions of a tetrahedron is isomorphic to a subgroup of S4.

Let G be the group of rigid motions of a tetrahedron. Let the set A = {1, 2, 3, 4} contain the labels
for each vertex of the tetrahedron. Since the motions are rigid, this means elements g ∈ G acting on
elements a ∈ A can be represented as permutations on A, i.e., g · a = σg(a). This means we can define
the map φ : G→ S4, defined as φ(g) = σg.

First, we can note that φ is a homomorphism, which is proven on p. 42 of D&F.
Next, we will show that φ is injective. To do this, we can note that the only element of G that does

not alter the location of any of the tetrahedron’s vertices is the identity of G. Therefore, the kernel of
φ only contains the identity. We can use the result from D&F Exercise 1.6.14, which states that φ is
injective if and only if the kernel of φ is the identity subgroup of G. Therefore, φ is injective.

Finally, we can use the results from D&F Exercise 1.6.13 to conclude: (1) if φ is a homomorphism,
φ(G) is subgroup of S4, and (2) if φ is an injective homomorphism, then G is isomorphic to φ(G). Using
these, then G is isomorphic to a subgroup of S4.
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D&F Exercise 1.7.21

Show that the group of rigid motions of a cube is isomorphic to S4. [This group acts on the set of four pairs of
opposite vertices.]

Let G be the group of rigid motions of a cube. From D&F Exercise 1.2.8, we know |G| = 24. We
consider that G acts on the four pairs of opposite vertices, and we can denote the set of pairs of opposite
vertices as A = {a1, a2, a3, a4}. Since the motions of the cube are rigid, this means elements of G acting
on elements of A will induce a permutation of the elements of A, i.e., g · a = σg(a), where a ∈ A. This
means we can define the map φ : G→ S4, defined as φ(g) = σg.

We can following the same line of reasoning as in the previous problem, D&F Exercise 1.7.20, con-
cluding that φ(G) is isomorphic to a subgroup of S4. However, for the case of the cube, |G| = 24 and
|S4| = 24, so φ(G) is in fact isomorphic to S4 itself.

XI. CENTRALIZERS AND NORMALIZERS, STABILIZERS AND KERNELS

D&F Exercise 2.2.1

Prove that CG(A) = {g ∈ G|g−1ag = a for all a ∈ A}.

Let G be a group, and A be a nonempty subset of G. We will show that CG(A) = {g ∈ G|g−1ag =
a for all a ∈ A}. To see this, by definition the centralizer of A in G is CG(A) = {g ∈ G|gag−1 =
a for all a ∈ A}. One can note that gag−1 = a is equivalent to g−1ag = a by multiplying both sides of the
equation on the left by g−1 and on the right by g. Therefore, CG(A) = {g ∈ G|g−1ag = a for all a ∈ A}.

D&F Exercise 2.2.2

Prove that CG(Z(G)) = G and deduce that NG(Z(G)) = G.

Let G be a group. We will show the following:

(a) Claim: CG(Z(G)) = G.

Proof: We will show CG(Z(G)) contains all elements of G. To show this, we can note that
CG(Z(G)) = {g ∈ G|gzg−1 = z for all z ∈ Z(G)}. But z ∈ Z(G) commutes with all elements
of g ∈ G, so the condition gzg−1 = z is satisfied for all g ∈ G, since gzg−1 = gg−1z = z. Therefore,
CG(Z(G)) contains all elements of G.

(b) Claim: NG(Z(G)) = G.

Proof: Since CG(Z(G)) ≤ NG(Z(G)) (cf. D&F Section 2.2), and from part (a) we proved
CG(Z(G)) = G, then NG(Z(G)) = G.

D&F Exercise 2.2.3

Prove that if A and B are subsets of G with A ⊆ B then CG(B) is a subgroup of CG(A).

Let A and B be subsets of G, where A ⊆ B. We will show CG(B) is a subgroup of CG(A). To begin,
let g ∈ CG(B). By definition, g commutes with all elements of B. Since A ⊆ B, then g also commutes
with all elements of A. So, by definition, g ∈ CG(A). Therefore CG(B) ⊆ CG(A). Since CG(B) and
CG(A) are both groups, we can conclude CG(B) ≤ CG(A).
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D&F Exercise 2.2.5

In each of parts (a) to (c) show that for the specified group G and subgroup A of G, CG(A) = A and NG(A) = G.

(a) G = S3 and A = {1, (123), (132)}.
(b) G = D8 and A = {1, s, r2, sr2}.
(c) G = D10 and A = {1, r, r2, r3, r4}.

We will show the following results:

(a) Let A = {1, (123), (132)}.
Claim: CS3(A) = A.

Proof: First we can note that A is a subgroup, since it satisfies the conditions for a group. Fur-
thermore, it is abelian. Therefore, A ≤ CS3(A). We also know that CS3 ≤ S3. Since |A| = 3 and
|S3| = 6, we can use Lagrange’s theorem to conclude that |CS3(A)| is either 3 or 6. However, we
know that |CS3(A)| cannot be 6, since, for example, (12)(123)(12)−1 = (13) ̸= (123). Therefore,
|CS3(A)| = 3. Since A ≤ CS3(A), we therefore can conclude that CS3(A) = A.

Claim: NS3(A) = S3.

Proof: Since CS3(A) ≤ NS3(A) ≤ S3, and we concluded that |CS3(A)| = 3, we can deduce from
Lagrange’s theorem that |NS3(A)| is 3 or 6. Now, we can note that because (13)(123)(13) =
(132) ∈ A, then (13) ∈ NS3(A). So, NS3(A) > 3, and we can conclude |NS3(A)| = 6. Since
|S3| = 6, therefore NS3(A) = S3.

(b) Let A = {1, s, r2, sr2}.
Claim: CD8(A) = A.

Proof: First we can note that A is a subgroup, since it satisfies the conditions for a group. Fur-
thermore, it is abelian. Therefore, A ≤ CD8(A). We also know that CD8 ≤ D8. Since |A| = 4 and
|D8| = 8, then we can conclude via Lagrange’s theorem that |CD8 | is either 4 or 8. However, we
know that |CD8(A)| cannot be 8, since, for example, r(s)r−1 = r2 ̸= s. Therefore, |CD8(A)| = 4.
Since A ≤ CD8(A), we therefore can conclude that CD8(A) = A.

Claim: ND8(A) = D8.

Proof: Since CD8(A) ≤ ND8(A) ≤ D8, and we concluded that |CD8(A)| = 4, we can deduce from
Lagrange’s theorem that |ND8(A)| is 4 or 8. Now, we can note that because r(s)r−1 = r2 ∈ A,
then r ∈ ND8(A). So, ND8(A) > 4, and we can conclude |ND8(A)| = 8. Since |D8| = 8, therefore
ND8(A) = D8.

(c) Let A = {1, r, r2, r3, r4}.
Claim: CD10(A) = A.

Proof: First we can note that A is a subgroup, since it satisfies the conditions for a group. Further-
more, it is abelian. Therefore, A ≤ CD10(A). We also know that CD10 ≤ D10. Since |A| = 5 and
|D10| = 10, then we can conclude via Lagrange’s theorem that |CD10 | is either 5 or 10. However,
we know that |CD10(A)| cannot be 10, since, for example, (sr)(s)(sr)−1 = sr2 ̸= s. Therefore,
|CD10(A)| = 5. Since A ≤ CD10(A), we therefore can conclude that CD10(A) = A.

Claim: ND10(A) = D10.

Proof: Since CD10(A) ≤ ND10(A) ≤ D10, and we concluded that |CD10(A)| = 5, we can deduce from
Lagrange’s theorem that |ND10(A)| is 5 or 10. Now, we can note that because (sr)(s)(sr)−1 = sr2 ∈
A, then sr ∈ ND10(A). So, ND10(A) > 5, and we can conclude |ND10(A)| = 10. Since |D10| = 10,
therefore ND10(A) = D10.
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D&F Exercise 2.2.6

Let H be a subgroup of the group G.

(a) Show that H ≤ NG(H). Give an example to show that this is not necessarily true if H is not a subgroup.

(b) Show that H ≤ CG(H) if and only if H is abelian.

First we will prove the following Lemma:

(i) Lemma: Let H be a group and h ∈ H. Then hHh−1 = H. (Conjugation of an entire group by any
of its elements gives back the original group.)

Proof:

Let h ∈ H.

First, we will show that given an element x ∈ hHh−1 then x ∈ H. To show this, let x ∈ hHh−1.
This means there there exists an element h′ ∈ H such that x = hh′h−1. But hh′h−1 ∈ H, since H
is closed under the group operation. Therefore x ∈ H.

Second, we will show that given an element x ∈ H, then x ∈ hHh−1. To begin, let x ∈ H. Then
we have x = h(h−1xh)h−1 ∈ H, since h, h−1, and h−1xh are all element of H.

Therefore, since hHh−1 ⊆ H and H ⊆ hHh−1, then hHh−1 = H, as desired.

Now back to the original problem. Let H be a subgroup of the group G. We will show the following:

(a) Claim: H ≤ NG(H).

Proof: We will first show that H ⊆ NG(H). Let h ∈ H. Given the result from (i), we have
hHh−1 = H. By definition, this means h ∈ NG(H). Therefore, since h ∈ H implies h ∈ NG(H),
we have H ⊆ NG(H). Next, because both H and NG(H) are subgroups of G, then H ≤ NG(H),
as desired.

Note: if H is not a subgroup, then this result does not necessarily hold. For example, let A be
the subset {(12), (13)} of S3. Here, A is not a group. So, while (12) ∈ A, we can note that
(12) /∈ NG(A) since (12)(13)(12)−1 = (23) /∈ A. So, A ̸⊆ NG(A).

(b) Claim: H ≤ CG(H) if and only if H is abelian.

Proof: First, assume that H is abelian. We will show H ≤ CG(H). Let h, h′ ∈ H. Because H
is abelian, we have hh′ = h′h. But this is equivalent to hh′h−1 = h′. Because this holds for all
h′ ∈ H, then by definition h ∈ CG(H). Since this holds for any arbitrary element h ∈ H, then
H ⊆ CG(H). Since H and CG(H) are both groups, we conclude H ≤ CG(H).

Conversely, assume H ≤ CG(H). We will show H is abelian. Let h ∈ H. Since H ≤ CG(H), then
h ∈ CG(H). This means hh′h−1 = h′ for all h′ ∈ H. This implies h commutes with all elements
of H. Since h is an arbitrary element of H, then we can conclude that all elements of H commute
with all elements of H. Therefore, H is abelian.

D&F Exercise 2.2.8

Let G = Sn, fix an i ∈ {1, 2, · · · , n} and let Gi = {σ ∈ G|σ(i) = i} (the stabilizer of i in G). Use group actions
to prove that Gi is a subgroup of G. Find |Gi|.

Let G = Sn and A = {1, 2, · · · , n}. Consider a group action of G on A, i.e., f : G × A → A, defined
by g · i = σg(i), where g ∈ G and i ∈ A. Here, we fix some i ∈ A. The proof that the stabilizer of i in G,
i.e., Gi, is a subgroup of G can be found in D&F Exercise 1.7.4(b).

Here, |Gi| = (n − 1)!. This comes from the fact that if the element i remains unchanged under the
action of Sn, then there are (n− 1)! elements of the Sn that do not affect i.
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D&F Exercise 2.2.10

Let H be a subgroup of order 2 in G. Show that NG(H) = CG(H). Deduce that if NG(H) = G then H ≤ Z(G).

Let H be a subgroup of order 2 in G. We will show the following:

(a) Claim: NG(H) = CG(H).

Proof: We will show that when |H| = 2, the definitions for CG(H) and NG(H) are identical. To
begin, we can note that because H only has two elements, we can represent it as H = {1, h}.
First, the condition that g ∈ CG(H) is gxg−1 = x for all x ∈ H = {1, h}. Explicitly substituting
in the elements of H for x, we have the following two conditions: g1g−1 = 1 and ghg−1 = h. The
former is automatically satisfied for all g ∈ G since g1g−1 = gg−1 = 1. The latter, ghg−1 = h, is a
non-trivial condition. So, if ghg−1 = h then g ∈ CG(H).

Second, the condition that an element g ∈ G is also g ∈ NG(H) is gHg−1 = H. Again, explicitly
substituting in the elements of H for x, we must have g1g−1 = 1, so we have the non-trivial
condition that ghg−1 = h. So, if ghg−1 = h then g ∈ NG(H).

Therefore, the condition for an element g ∈ G to be in CG(H) and NG(H) are identical, i.e.,
ghg−1 = h, and we can conclude that CG(H) = NG(H).

(b) Claim: If NG(H) = G then H ≤ Z(G).

Proof: If NG(H) = G, then we can use the result from part (a) to conclude CG(H) = G. Here,
CG(H) = G means gxg−1 = x for all g ∈ G and for all x ∈ H. This implies that all elements of H
commute with all elements of G. Therefore, H ≤ Z(G).

XII. CYCLIC GROUPS AND CYCLIC SUBGROUPS

D&F Exercise 2.3.2

If x is an element of the finite group G and |x| = |G|, prove that G = ⟨x⟩. Give an explicit example to show
that this result need not be true if G is an infinite group.

Let x be an element of the finite group G and suppose |x| = |G| = n. We will show that G = ⟨x⟩.
We can note the result from D&F Exercise 1.1.32, which states: if x is an element of finite order n in a
group G, then the elements 1, x, x2, · · · , xn−1 are all distinct. So, we can use this result to say that the set
⟨x⟩ = {1, x, x2, · · · , xn−1} contains distinct elements. In particular, there are n such distinct elements.
But G only contains n elements. Therefore, G = ⟨x⟩.

This result holds when G is a finite group. However, if G is an infinite group, then it does not
necessarily hold. To see why, consider G = (Z,+) and 2 ∈ G. While |G| and |2| are both infinite, here
⟨2⟩ = {· · · ,−4,−2, 0, 2, 4, · · · } ≠ G.

D&F Exercise 2.3.9

Let Z36 = ⟨x⟩. For which integers a does the map φa defined by φa : 1̄ 7→ xa extend to a well defined
homomorphism from Z/48Z into Z36? Can ψa ever be a surjective homomorphism?

Let Z36 = ⟨x⟩, and let φa be the map φa : Z/48Z → Z36, defined by φa(n̄) = xna. We will derive for
what integers a lead to φa being a well-defined homomorphism.

Before we begin, we will show the following results. In the following, let a,m, n, x, y ∈ Z.
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(i) Claim: If m ≡ n (mod x) and am ≡ an (mod y), then a is a multiple of y/ gcd(x, y).

Proof: Let d = gcd(x, y), so x = dx′ and y = dy′, so gcd(x′, y′) = 1. Since m ≡ n (mod x) and
am ≡ an (mod y), there are integers k, ℓ such that m − n = xk and a(m − n) = yℓ. This implies
axk = yℓ, or equivalently, ℓ = (ax′/y′)k. The LHS of this equation is an integer, so the RHS must
also be an integer. Now, the value of k is not uniquely determined. So in order to guarantee that ℓ
is an integer, ax′/y′ must be an integer, i.e., a must be a multiple of y′ = y/ gcd(x, y), as desired.

(ii) Claim: If m ≡ n (mod x) and a is a multiple of y/ gcd(x, y), then am ≡ an (mod y).

Proof: Let d = gcd(x, y), where y = y′d. Assume a is a multiple of y/d = y′, so there is an
integer ℓ such that a = y′ℓ, and multiplying both sides by x yields ax = xy′ℓ. Given that m ≡ n
(mod x), there is an integer k such that m − n = xk. Multiplying both sides by a, we have
a(m− n) = axk = (xy′ℓ)k = (xy′k)ℓ. Since xy′k is an integer, therefore a(m− n) ≡ 0 (mod y), as
desired.

Armed with these results, we will now solve the desired problem, where we will show that φa is well
defined if and only if a is a multiple of 3. To begin, assume φa is well defined. Let m,n ∈ Z, where
m ≡ n (mod 48), then since φa is well defined, we have φa(m) = φa(n). This implies xma = xna, which is
equivalent to xa(m−n) = 1. Since |x| = 36, we can conclude a(m−n) ≡ 0 (mod 36). Combining this result
with m− n ≡ 0 (mod 48), we can use (i) to conclude that a is a multiple of 36/(36, 48) = 36/12 = 3.

Conversely, now we will show that if a is a multiple of 3, then φa is well-defined. To begin, assume
a is a multiple of 3. Let m,n ∈ Z, where m ≡ n (mod 48). Our aim is to show that φa(m) = φa(n).
Since a is a multiple of 3 = 48/ gcd(36, 48), we can use the result in (ii) to say a(m − n) ≡ 0 (mod 36).
Since |x| = 36, then 1 = xa(m−n), or equivalently, xam = xan, i.e., φa(m) = φa(n), and therefore φa is
well defined.

We can note that φa satisfies the condition φa(m)φa(n) = xamxan = xa(m+n) = φa(m+ n) = φa(m+
n) with no further constraint on the value of a. So, if a is a multiple of 3, then φa is a well-defined
homomorphism.

Finally, we will show that φa cannot be a surjective homomorphism. To see why, we remind ourselves
that Z36 = ⟨x⟩, and we consider the element x ∈ Z36 in the co-domain of φa. Let a be a multiple of 3.
We will show by way of contradiction that x is not in the image of φa. Assume x is in the image of φa,
i.e., there is some n ∈ Z such that φa(n̄) = x. But φa(n̄) = xna, so na ≡ 1 (mod 36). However, this is a
contradiction, since according to D&F Exercise 0.3.12, if a and 36 are not relatively prime, then there is
no integer n such that na ≡ 1 (mod 36). Therefore, φa cannot be a surjective homomorphism.

D&F Exercise 2.3.11

Find all cyclic subgroups of D8. Find a proper subgroup of D8 which is not cyclic.

These are the nontrivial cyclic subgroups of D8:

• ⟨r⟩ = {1, r, r2, r3}

• ⟨r2⟩ = {1, r2}

• ⟨s⟩ = {1, s}

• ⟨sr⟩ = {1, sr}

• ⟨sr2⟩ = {1, sr2}

• ⟨sr3⟩ = {1, sr3}

We can note the non-cyclic subgroup of D8 from D&F Exercise 2.2.5(b): {1, s, r2, sr2}.
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D&F Exercise 2.3.12

Prove that the following groups are not cyclic:

(a) Z2 × Z2

(b) Z2 × Z

(c) Z × Z.

In order to solve these problems, we will show the following results:

(i) Claim: Let G1 and G2 be arbitrary nontrivial groups. If the product group G = G1 ×G2 is cyclic,
then G is finite.

Proof: Let G1 and G2 be arbitrary groups and let G be the product group G = G1 ×G2. Suppose
G is cyclic. We will show G is finite. To begin, because G is cyclic, this means that G can be
generated by a single element G = ⟨(x, y)⟩, where x ∈ G1 and y ∈ G2. We can note that (x, 1) ∈ G
by definition, but since G = ⟨(x, y)⟩, then there exists some element (x, y)k ∈ ⟨(x, y)⟩, where k is
an integer, such that (x, y)k = (x, 1). Since (x, y)k = (xk, yk), this implies xk−1 = 1 and yk = 1.
So, x and y have finite order. Therefore, (x, y) also has finite order, and ⟨(x, y)⟩ = G is a finite
group.

(ii) Claim: The product group G = Zm × Zn is cyclic if and only if gcd(m,n) = 1.

Proof: Assume G = Zm×Zn is cyclic. Let d = gcd(m,n). We will show d = 1. Because G is cyclic,
it can be generated by one of its elements, call it (x, y). Here, because x and y must generate all
elements of Zm and Zn respectively, we must have |x| = m and |y| = n. That is, xm = 1 and
yn = 1. Next, we can note the following: (1, 1) =

(
(xm)n/d, (yn)m/d

)
= (x, y)mn/d. From this we

can see that mn/d must be a multiple of the order of (x, y). Because (x, y) generates all elements
of G, and |G| = mn, then |(x, y)| = mn, so d must be 1.

Conversely, assume gcd(m,n) = 1. We will show G is cyclic. Because G1 and G2 are individually
cyclic, let x and y be their generators, respectively, i.e., G1 = ⟨x⟩ and G2 = ⟨y⟩, where |x| = m
and |y| = n. Since G is finite, then there must be some integer k such that (x, y)k = (1, 1),
and by definition the order of (x, y) is the smallest value of k where this condition is met. Since
(1, 1) = (x, y)k = (xk, yk), we have xk = 1 and yk = 1, so k must be a common multiple of m
and n. So, the order of (x, y) is the smallest common multiple of m and n, i.e., mn/ gcd(m,n).
We assumed gcd(m,n) = 1, so the order of (x, y) is therefore mn, i.e., (x, y) generates mn distinct
elements. Since there are mn elements in G, therefore (x, y) generates all of G, and thus G is cyclic.

Now back to the problems at hand:

(a) Using the contrapositive of the result in (ii), we can conclude that the group Z2 ×Z2 is not cyclic,
since gcd(2, 2) = 2.

(b) Using the contrapositive of the result in (i), we can conclude that because Z2×Z is not finite, then
it is not cyclic.

(c) Using the contrapositive of the result in (i), we can conclude that because Z×Z is not finite, then
it is not cyclic.
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D&F Exercise 2.3.15

Prove that Q × Q is not cyclic.

Using the contrapositive of the result (i) in D&F Exercise 2.3.12, we can conclude that because Q×Q
is not finite, then it is not cyclic.

Alternatively, according to Theorem 2.3.7 in D&F, if a group is cyclic then every one of its subgroups
is cyclic. The contrapositive of this statement is: if a subgroup is not cyclic then the group is not cyclic.
Using this, we can conclude that because Z×Z is a subgroup of Q×Q, and we showed that Z×Z is not
cyclic in D&F Exercise 2.3.12(c), then Q × Q cannot be cyclic.

D&F Exercise 2.3.16

Assume |x| = m and |y| = n. Suppose that x and y commute: xy = yx. Prove that |xy| divides the least
common multiple of m and n. Need this be true if x and y do not commute? Give an example of commuting
elements x, y such that the order of xy is not equal to the least common multiple of |x| and |y|.

Let G be a group where x ∈ G has order m, y ∈ G has order n, and xy = yx. We will show that |xy|
divides the least common multiple of m and n. To begin, let d = gcd(m,n). Because |x| = m and |y| = n,
then xm = 1 and yn = 1. So, because x and y commute, we have 1 = xmyn = (xm)n/d(yn)m/d = (xy)mn/d.
This implies that that mn/d must be a multiple of |xy|. That is, |xy| divides mn/d. Since the least
common multiple of m and n is mn/d, therefore |xy| divides the least common multiple of m and n.

On the other hand, this result is not necessarily true if x and y do not commute. For example, consider
x = (12) and y = (23). Here, |(12)| = 2 and |(23)| = 2, so the least common multiple of 2 and 2 is 2. But
|xy| = |(12)(23)| = |(123)| = 3, which does not divide 2.

Finally, we will show an example of commuting elements x, y such that the order of xy is not equal
to the least common multiple of |x| and |y|. Consider the group ⟨r⟩, where |r| = 3, where all elements of
G commute. Let x = r and y = r2, so |x| = 3 and |y| = 3. The least common multiple of |x| and |y| is 3,
which is not equal to |xy| = |r3| = |1| = 1.

D&F Exercise 2.3.19

Show that if H is any group and h is an element of H, then there is a unique homomorphism from Z to H such
that 1 7→ h.

Let H be a group and let h ∈ H. Define the map φ : Z → H, defined as φ(n) = hn.
First, φ is a homomorphism, since φ(m+ n) = hm+n = hmhn = φ(m)φ(n).
Next, we will show φ is the unique homomorphism that satisfies φ(1) = h. To do this, suppose there

is another homomorphism φ′ : Z → H, where φ′(1) = h. Then we have φ′(n) = φ′(1)n = hn = φ(n).
Therefore, φ is the unique homomorphism that maps Z → H such that 1 7→ h.

D&F Exercise 2.3.21

Let p be an odd prime and let n be a positive integer. Use the Binomial Theorem to show that (1 + p)p
n−1 ≡ 1

(mod pn) but (1 + p)p
n−2 ̸≡ 1 (mod pn). Deduce that 1 + p is an element of order pn−1 in the multiplicative

group (Z/pnZ)×.

Let p be an odd prime and let n be a positive integer. First, we aim to show (1 + p)p
n−1 ≡ 1 (mod
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pn). Using the Binomial theorem, we have:

(1 + p)p
n−1

=

pn−1∑
k=0

(
pn−1

k

)
pk (77)

=

pn−1∑
k=0

pn−1! pk

k! (pn−1 − k)!
(78)

= 1 +

pn−1∑
k=1

(pn−1 − k + 1)(pn−1 − k + 2) · · · (pn−1)pk

k!
(79)

We can note that the summand in Eq. (79) is an integer, since the binomial coefficient is an integer. Now
our aim will be show that the summand in Eq. (79) has at least n powers of p in the numerator. To keep
notation simpler, we’ll invent an indicator function, call it Φp, which is similar to a logarithm, but it only
pays attention to the powers of p and nothing else. For example, Φp(cp

ap−b) = a− b = Φp(p
a)− Φp(p

b),
so

Φp

(
(pn−1 − k + 1)(pn−1 − k + 2) · · · (pn−1)pk

k!

)
= Φp

(
(pn−1 − k + 1)(pn−1 − k + 2) · · · (pn−1)

)
+ Φp(p

k)− Φp(k!) (80)

Now we can count the powers of p for the following terms:

• Φp((p
n−1 − k + 1)(pn−1 − k + 2) · · · (pn−1)) ≥ n− 1.

• Φp(p
k) = k

• Φp(k!) ≤ (k − 1)/(p− 1) (cf D&F Exercise 0.2.8). Or, equivalently, −Φp(k!) ≥ −(k − 1)/(p− 1).

and we have the following inequality:

Φp

(
(pn−1 − k + 1)(pn−1 − k + 2) · · · (pn−1)pk

k!

)
≥ n+ k − 1− (k − 1)/(p− 1) (81)

We can note that k − 1− (k − 1)/(p− 1) ≥ 0 when k ≥ 1 and p ≥ 3, so therefore

Φp

(
(pn−1 − k + 1)(pn−1 − k + 2) · · · (pn−1)pk

k!

)
≥ n (82)

To summarize, the summand in Eq. (79) is an integer and it has at least n powers of p. Therefore, all
the terms in the sum (except the leading term, which is 1) in Eq. (79) are congruent to 0 (mod pn).
Therefore, (1 + p)p

n−1 ≡ 1 (mod pn).
Now we will show that (1 + p)p

n−2 ̸≡ 1 (mod pn). Using the Binomial theorem, we have:

(1 + p)p
n−2

=

pn−2∑
k=0

(
pn−2

k

)
pk (83)

=

pn−2∑
k=0

pn−2! pk

k! (pn−2 − k)!
(84)

= 1 + pn−1 + pn
(pn−2 − 1)

2
+

pn−2∑
k=3

(pn−2 − k + 1)(pn−2 − k + 2) · · · (pn−2)pk

k!
(85)
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The first term in Eq. (85) is 1, so it’s congruent to 1 (mod pn). The second term is not congruent to 1
(mod pn). The third term is congruent to 0 (mod pn), since p raised to any power is odd, so pn−2 − 1 is
even, so (pn−2 − 1)/2 is an integer. What remains is to show the remaining terms under the summation
sign are all congruent to 0 (mod pn).

Following the same method as before,

Φp

(
(pn−2 − k + 1)(pn−2 − k + 2) · · · (pn−2)pk

k!

)
= Φp

(
(pn−2 − k + 1)(pn−2 − k + 2) · · · (pn−2)

)
+ Φp(p

k)− Φp(k!) (86)

Now we can count the powers of p for the following terms:

• Φp((p
n−2 − k + 1)(pn−2 − k + 2) · · · (pn−2)) ≥ n− 2.

• Φp(p
k) = k

• Φp(k!) ≤ (k − 1)/(p− 1) (cf D&F Exercise 0.2.8). Or, equivalently, −Φp(k!) ≥ −(k − 1)/(p− 1).

and we have the following inequality:

Φp

(
(pn−2 − k + 1)(pn−2 − k + 2) · · · (pn−2)pk

k!

)
≥ n+ k − 2− (k − 1)/(p− 1) (87)

To simplify this further, we have the following inequality when k ≥ 3 and p ≥ 3:

(k − 2)(p− 2) ≥ 1 (88)

kp− 2k − 2p+ 4 ≥ 1 (89)

kp− k − 2p+ 2 ≥ k − 1 (90)

(k − 2)(p− 1) ≥ k − 1 (91)

k − 2 ≥ (k − 1)/(p− 1) (92)

Therefore,

Φp

(
(pn−2 − k + 1)(pn−2 − k + 2) · · · (pn−2)pk

k!

)
≥ n (93)

And, like before, the term under the summation sign of Eq. (85) are integers and have at least n factors
of p, so they all congruent to 0 (mod pn).

From these results, we aim to deduce that 1 + p is an element of order pn−1 in the multiplicative
group (Z/pnZ)×. Let a be the order of 1 + p, i.e., a = |1 + p|. Since (1 + p)p

n−1 ≡ 1 (mod pn), then
pn−1 is a multiple of a, i.e., there is an integer ℓ such that aℓ = pn−1. But since pn−1 only has factors
of p, then a and ℓ must also only have factors of p. Put another way, we can represent a as a = pr,
where r is positive integer, so (1 + p)p

r ≡ 1, where r ≤ n − 1. We will now show r = n − 1 by way of
contradiction. Assume r < n− 1. That is, there is some integer s such that r+ s = n− 2. Then we have

1 ≡ (1 + p)p
r ≡

(
(1 + p)p

r)ps ≡ (1 + p)p
r+s ≡ (1 + p)p

n−2 ̸≡ 1, a contradiction. Therefore, r = n− 1, and
|1 + p| = pn−1.

D&F Exercise 2.3.23

Show that (Z/2nZ)× is not cyclic for any n ≥ 3. [Find two distinct subgroups of order 2.]
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We will show that the group (Z/2nZ)× is not cyclic for any n ≥ 3. To do this, we will utilize Theorem
7 in D&F Section 2.3, which states that given a finite cyclic group of order n, for every a that divides
n there is a unique subgroup of order a. So, if a group has more than one subgroup of the same order,
then the group cannot be cyclic. So, our aim will be to identify more than one subgroups of (Z/2nZ)×

that have the same order, when n ≥ 3.
First, we can note that (Z/2nZ)× = {k ∈ Z|(k, n) = 1} will contains all odd integers less than 2n

since 2n only has factors of 2 and odd integers must have at least one odd factor. That is, (Z/2nZ)× =
{1, 3, 5, · · · , 2n − 1}. We identify two such odd integers in this set, i.e., x1 := 2n − 1 and x2 := 2n−1 − 1.
First, we can note that neither x1 nor x2 are congruent to 1 (mod 2n) when n ≥ 3. However, both of
these elements square to 1 (mod 2n):

x21 = (2n − 1)2 (94)

= 22n − 2(2n) + 1 (95)

= (2n)(2n − 2) + 1 (96)

≡ 1 + 0 (mod 2n) (97)

≡ 1 (mod 2n) (98)

x22 = (2n−1 − 1)2 (99)

= 22(n−1) − 2(2n−1) + 1 (100)

= 2n(2n−2 − 1) + 1 (101)

≡ 0 + 1 (mod 2n) (102)

≡ 1 (mod 2n). (103)

Therefore, x1 and x2 both have order 2 when n ≥ 3. So, we will always have more than one subgroup of
(Z/2nZ)× of order 2 when n ≥ 3. Therefore, we can use the contrapositive of Theorem 7 and conclude
that (Z/2nZ)× is not cyclic for n ≥ 3.

D&F Exercise 2.3.25

Let G be a cyclic group of order n and let k be an integer relatively prime to n. Prove that the map x 7→ xk is
surjective. Use Lagrange’s theorem to prove the same is true for any finite group of order n. (For such k each
element has a kth root in G. It follows from Cauchy’s Theorem in Section 3.2 that if k is not relatively prime
to the order of G then the map x 7→ xk is not surjective.)

We will show the following results:

(i) Claim: Let G = ⟨x⟩, where |x| = n, and let k be an integer relatively prime to n. The map
φ : G 7→ G, defined as φ(x) = xk, is surjective.

Proof: Because (k, n) = 1, then there exists integers a and b such that ak + bn = 1. Let xj ∈ G.
Because xn = 1, we can note φ(xaj) = xajk = xj(1−bn) = xj(xn)−jb = xj . Therefore, φ is surjective.

(ii) Claim: Let G be a finite group of order n and let k be an integer that is relatively prime to n. The
map φ : G 7→ G, defined as φ(g) = gk, is surjective.

Proof: Let g ∈ G. The group ⟨g⟩ is a subgroup of G. Let m = |⟨g⟩|, so gm = 1. According to
Lagrange’s theorem, n = rm for some r ∈ Z, so gn = grm = (gm)r = 1. Now, since (k, n) = 1, then
there exists integers a and b such that ak+bn = 1. So, we have φ(ga) = gak = g1−bn = g(gn)−b = g.
Therefore, φ is surjective.
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XIII. SUBGROUPS GENERATED BY SUBSETS OF A GROUP

D&F Exercise 2.4.2

Prove that if A is a subset of B then ⟨A⟩ ≤ ⟨B⟩. Give an example where A ⊆ B with A ̸= B but ⟨A⟩ = ⟨B⟩.

Let A be a subset of B. We will show ⟨A⟩ ≤ ⟨B⟩. Here, ⟨B⟩ is a group that contains B (cf p. 62 of
D&F). Since all elements of A are contained B, then all elements of A are also contained in ⟨B⟩. So, by
Proposition 2.8 (p. 62 of D&F), ⟨A⟩ is a subgroup of ⟨B⟩.

The following is an example where A ⊆ B and A ̸= B but ⟨A⟩ = ⟨B⟩. Let A = {(12), (123)} and
B = {(23), (123)}. Here, we have A ⊆ B and A ̸= B. But both ⟨A⟩ and ⟨B⟩ generate all of S3. To verify
this, we can confirm that A generates the rest of the elements in S3:

(12)(12) = 1 (104)

(12)(123) = (23) (105)

(123)(123) = (132) (106)

(123)(12) = (13) (107)

and likewise B also generates the rest of the elements in S3:

(23)(23) = 1 (108)

(23)(123) = (13) (109)

(123)(123) = (132) (110)

(123)(23) = (12) (111)

D&F Exercise 2.4.6

Prove that the subgroup of S4 generated by (12) and (12)(34) is a noncyclic group of order 4.

The subgroup of S4 generated by (12) and (12)(34) can be easily found since both (12) and (12)(34)
both have only order 2:

(12)(12) = 1 (112)

(12)(34)(12)(34) = 1 (113)

(12)(12)(34) = (34) (114)

(12)(34)(12) = (34) (115)

The set A = {1, (12), (12)(34), (34)} is closed under multiplication and inverses, so indeed this is the
subgroup generated by (12) and (12)(34). We know A is not cyclic since it has more than one element of
order 2 (cf Theorem 7 in D&F Section 2.3).

D&F Exercise 2.4.7

Prove that the subgroup of S4 generated by (12) and (13)(24) is isomorphic to the dihedral group of order 8.

We will show that the subgroup of S4 generated by (12) and (13)(24) is isomorphic to D8. First, we
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can note that s and rs generate of D8, which can be easily verified:

(s)2 = 1 (116)

(rs)(s) = r (117)

(rs)(s)(rs)(s) = r2 (118)

(s)(rs) = r−1 = r3 (119)

(rs)(s)(rs) = r2s (120)

(s)(rs)(s) = sr = r−1s = r3s (121)

So, we have D8 = ⟨s, rs⟩. Now we can see what subgroup is generated by (12) and (13)(24):

(12)2 = 1 (122)

(12)((13)(24)) = (1324) (123)

((13)(24))(12) = (1423) (124)

(12)((13)(24))(12) = (14)(23) (125)

((13)(24))(12)((13)(24)) = (34) (126)

((13)(24))(12)((13)(24))(12) = (12)(34) (127)

So, ⟨(12), (13)(24)⟩ is a subgroup of 8 elements.
Define the map φ : D8 → ⟨(12), (13)(24)⟩ defined as si(rs)j 7→ (12)i((13)(24))j . First, we can note

that the generators are mapped to each other, i.e., φ(s) = (12) and φ(rs) = (13)(24). Then we can
note that the relations of D2n, i.e., s

2 = 1 and (rs)2 = 1 also map to the identity, i.e., φ(s2) = 1 and
φ((rs)2) = 1. Therefore, φ is a homomorphism. Furthermore, φ is an isomorphism, because there is a
one-to-one correspondence between the element of D8 and ⟨(12), (13)(24)⟩, which can be seen in the table
below:

D8 φ(D8)

1 1

r (1423)

r2 (12)(34)

r3 (1324)

rs (13)(24)

r2s (34)

r3s (14)(23)

D&F Exercise 2.4.8

Prove that S4 = ⟨(1234), (1243)⟩.

Let A = ⟨(1234), (1243)⟩. We will show that A = S4. First we can note that {(1234), (1243)} ∈ S4,
|S4| = 24, and A ≤ S4, so by Lagrange’s Theorem, |A| divides 24. We can note that ⟨(1234)⟩ is a subgroup
of order 4. So, 4 divides |A|. Also, (1234)(1243) = (142), and ⟨(142)⟩ is a subgroup of order 3. So, 3
divides |A|. Lastly, we can note (1234)2 = (13)(24) and (1234)(1243)3(1234) = (12), and we know from
D&F Exercise 2.4.7 that (13)(24) and (12) generate a subgroup of order 8. So, 8 divides |A|. Therefore,
|A| must be equal to 24, i.e., all the elements of S4, and thus A = S4.
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D&F Exercise 2.4.11

Show that SL2(F3) and S4 are two non-isomorphic groups of order 24.

Stumped. Could it be possible to pass over this problem?

D&F Exercise 2.4.15

Exhibit a proper subgroup of Q which is not cyclic.

We will show that there exists a subgroup of Q that is not cyclic. Consider the set A = {a/2b|a ∈
Z, b ∈ Z+}. Here, A is nonempty and A ⊆ Q. To show that A is a subgroup under addition, let a, b ∈ Z
and c, d ∈ Z+, and we can note a/2b + c/2d = (2da+ 2bc)/(2b+d) ∈ A, since the numerator is an integer
and the denominator is a power of 2, so the set is closed under addition. Also, given an element a/2b ∈ A,
its inverse is −a/2b ∈ A, so the set is closed under inverses. Finally, the identity, i.e., 0, is in A. So, A is
a subgroup of Q. However, A is a proper subgroup of Q, since, for example, 1/7 ̸∈ A but 1/7 ∈ Q.

Finally, we will show that A is not cyclic by way of contradiction. Assume A is cyclic. Then it would
be generated by one of its elements. Let the generator be m/2n, where m ∈ Z and n ∈ Z+. Consider the
element m/2n+1 ∈ A. Since m/2n generates A, then there is some integer k such that km/2n = m/2n+1.
This implies k = 1/2, which is a contradiction, since k must be an integer. Therefore, A is a not cyclic.

XIV. THE LATTICE OF SUBGROUPS OF A GROUP

D&F Exercise 2.5.4

Use the given lattice to find all pairs of elements that generate D8 (there are 12 pairs).

See below the lattice of D8.

Our goal is to find all pairs of elements that generate D8. As an example, the subgroups generated by
r and s are not subgroups of each other, which can be seen from the lattice. Furthermore, the smallest
subgroup of which ⟨s⟩ and ⟨r⟩ are both subgroups is D8. Therefore, ⟨s, r⟩ generates D8. The other 11
pairs that follow this same patters are [note: since ⟨r⟩ = ⟨r3⟩, then for every time r is one of the generators
of D8, so will be r3]: ⟨r, r2s⟩, ⟨r, rs⟩, ⟨r, r3s⟩, ⟨s, rs⟩, ⟨s, r3s⟩, ⟨r2s, rs⟩, ⟨r2s, r3, s⟩, ⟨r3, s⟩ ⟨r3, r2s⟩, ⟨r3, rs⟩,
⟨r3, r3s⟩.
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D&F Exercise 2.5.9

Draw the lattices of subgroups of the following groups:

(a) Z/16Z

(b) Z/24Z

(c) Z/48Z [See Exercise 2.3.6]

(a) Below is the lattice for Z/16Z:

Z/16Z

⟨2⟩

⟨4⟩

⟨8⟩

⟨0⟩

(b) Below is the lattice for Z/24Z:

Z/24Z

⟨2⟩ ⟨3⟩

⟨4⟩ ⟨6⟩

⟨8⟩ ⟨12⟩

⟨0⟩

(c) Below is the lattice for Z/48Z:

Z/48Z

⟨2⟩ ⟨3⟩

⟨4⟩ ⟨6⟩

⟨8⟩ ⟨12⟩

⟨16⟩ ⟨24⟩

⟨0⟩
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D&F Exercise 2.5.10

Classify groups of order 4 by proving that if |G| = 4 then G ∼= Z4 or G ∼= V4. [See D&F Exercise 1.1.36.]

Let G be a group of order 4. We will show that when G is cyclic then G ∼= Z4, and when G is not
cyclic then G ∼= V4.

To begin, first assume G is cyclic. This means G has an element of order 4 that generates 4 distinct
elements, i.e., the entire group G. So, in this case, G ∼= Z4.

Now assume G is not cyclic. This means there is no element in G of order 4. To proceed, we can
explicitly label the distinct group elements as G = {1, a, b, c}. What is the order of the subgroup ⟨a⟩?
From Lagrange’s theorem, ⟨a⟩ must divide 4, but it cannot be 1, since a ̸= 1, and it cannot be 4, since
we assumed G is not cyclic. So the order of ⟨a⟩ must be 2, and therefore a must have order 2. Using the
same argument, b and c must also have order 2. Now, we will show that the rest of the multiplication
rules of G are determined. For example, can ab = a? It cannot, since b ̸= 1. Can ab = b? It cannot, since
a ̸= 1. Can ab = 1? It cannot, since a2 = 1, and a ̸= b. So, ab = c. The same argument can be followed
to determine that ba = c, ac = ca = b and bc = cb = a. This yields the multiplication rules for V4, so
G ∼= V4 (cf D&F Exercise 1.1.36).

XV. QUOTIENT GROUPS AND HOMOMORPHISMS: DEFINITIONS AND EXAMPLES

D&F Exercise 3.1.1

Let φ : G → H be a homomorphism and let E be a subgroup of H. Prove that φ−1(E) ≤ G (i.e., the preimage
or pullback of a subgroup under a homomorphism is a subgroup). If E�H prove that φ−1(E)�G. Deduce that
kerφ�G.

Let φ : G→ H be a homomorphism, let E be a subgroup of H, and let N = φ−1(E).
First, we will show that N ≤ G. We begin by noting that N is nonempty, since E is nonempty. Now,

let x, y ∈ N . Here, φ(x) = a and φ(y) = b, where a, b ∈ E, by definition. Because φ is a homomorphism
and ab−1 ∈ E since E is a subgroup, we have φ(xy−1) = φ(x)φ(y)−1 = ab−1 ∈ E. So, xy−1 ∈ N , by
definition. Since this follows for any choice for x and y, then N ≤ G according to the Subgroup Criterion.

Next, assume E �H. We will show N �G. To begin, let g ∈ G. Here, φ(g) = a, where a ∈ H. Now,
since E is a normal subgroup, we have φ(gNg−1) = φ(g)φ(N)φ(g)−1 = aEa−1 = E. So, gNg−1 ∈ N , by
definition. This is the condition for normal subgroup, i.e., N �G, as desired.

Finally, we can use the above result to deduce kerφ�G. So, if we let E = {1}, then E �H since the
trivial subgroup is always normal. Furthermore in this case, N = φ−1(E = {1}) = kerφ. So, using the
result in the previous paragraph, we have kerφ�G, as desired.

Alternatively, one can show that kerφ � G in a straight-forward way. Let g ∈ G and x ∈ kerφ.
Then we have φ(gxg−1) = φ(g)φ(x)φ(g)−1 = φ(g)1φ(g)−1 = 1. So g kerφg−1 ⊆ kerφ for any g ∈ G.
Therefore, kerφ�G.

D&F Exercise 3.1.2

Let φ : G → H be a homomorphism of groups with kernel K and let a, b ∈ φ(G). Let X ∈ G/K be the fiber
above a and let Y be the fiber above b, i.e., X = φ−1(a), Y = φ−1(b). Fix an element u of X (so φ(u) = a).
Prove that if XY = Z in the quotient group G/K and w is any member of Z, then there is some v ∈ Y such
that uv = w. [Show u−1w ∈ Y .]

Let φ : G→ H be a well-defined homomorphism with kernel K. Let a, b ∈ φ(G), such that X ∈ G/K
is the fiber above a and Y ∈ G/K is the fiber above b. Assume that XY = Z in G/K, fix u ∈ X, and let
w ∈ Z. We will show that there exists a v ∈ Y where uv = w, i.e., that u−1w ∈ Y .
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To begin, since XY = Z in G/K, we can note that because XY and Z are sets in G, and because
φ is well-defined, that φ(XY ) = φ(Z). Because φ is a homomorphism, this implies φ(X)φ(Y ) = φ(Z),
i.e., ab = φ(Z). This means for any z ∈ Z, then φ(z) = ab. Now we can note: φ(u−1w) = φ(u)−1φ(w) =
a−1(ab) = b. Therefore, u−1w ∈ Y , by definition.

D&F Exercise 3.1.3

Let A be an abelian group and let B be a subgroup of A. Prove that A/B is abelian. Give an example of a
non-abelian group G containing a proper normal subgroup N such that G/N is abelian.

Let A be an abelian group and let B be a subgroup of A. To begin, we first prove a preliminary result
[cf Example 2 in Section 3.1 of D&F]:

(i) Claim: Let H be a subgroup of G. If G is abelian, then H is a normal subgroup of G.

Proof: This follows from Theorem 6(3) in Section 3.1 in D&F, which states that if N ≤ G, and
gN = Ng for all g ∈ G, then N �G. In our case, since H ≤ G and gH = Hg for all g ∈ G since
G is abelian, therefore H �G, as desired.

Using (i), we can conclude that because A is abelian, then B �A. So, A/B is a quotient group.
We will now show that A/B is also abelian. Let π : A → A/B be the natural projection homomor-

phism. Because π is surjective, this means that for every X ∈ A/B, there exists an a ∈ A such that
π(a) = X. Using this fact, let X,Y ∈ A/B and a1, a2 ∈ A such that π(a1) = X and π(a2) = Y . So,
because π is a homomorphism and all elements in A commute, we have XY = π(a1)π(a2) = π(a1a2) =
π(a2a1) = π(a2)π(a1) = Y X. Since the choices of X and Y were arbitrary, then we can conclude that
A/B is abelian.

Now we will show an example of a non-abelian group G containing a proper normal subgroup N such
that G/N is abelian. Example 3 in Section 3.1 of D&F provides an example of this, where G = D8 and
N = {1, r2}. The text shows that G/N ∼= V4, which is an abelian group.

D&F Exercise 3.1.5

Use [D&F Exercise 3.1.4, which proved that in the quotient group G/N , (gN)α = gαN for all α ∈ Z] to prove
that the order of the element gN in G/N is n, where n is the smallest positive integer such that gn ∈ N (and
gN has infinite order if no such positive integers exists). Give an example to show that the order of gN in G/N
may be strictly smaller than the order of g in G.

Let G/N be a quotient group. If it exists, let n be the smallest positive integer such that gn ∈ N . We
will show that the order of gN is n. To begin, suppose |gN | = α. This means α is the smallest positive
integer such that (gN)α = N . Using D&F Exercise 3.1.4, this implies gαN = N . Since N is a subgroup,
the relation gαN = N implies gα ∈ N . Since α is the smallest positive integer where this holds, then
α = n, as desired.

On the other hand, suppose there is no positive integer n such that gn ∈ N . We will show that there is
no positive integer k such that (gN)k = 1. We will proceed by contradiction. Assume there is a positive
integer k such that (gN)k = N . Then (gN)k = gkN = N , so gk ∈ N . But this is a contradiction, since we
assumed there is no such positive integer. Therefore, there is no positive integer k such that (gN)k = 1.

In order to provide an example that the order of gN ∈ G/N may be strictly smaller than the order
of g ∈ G, consider when G = D8, N = {1, r2}, and g = r. Here, |r| = 4. But the element gN = r{1, r2}
has order 2, since r ̸= 1 and r2 = 1, and by using the above result, then |rN | = 2.
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D&F Exercise 3.1.10

Let φ : Z/8Z → Z/4Z by φ(ā) = ā. Show that this is a well defined, surjective homomorphism and describe its
fibers and kernel explicitly (showing that φ is well defined involves the fact that ā has a different meaning in the
domain and range of φ).

Let φ : Z/8Z → Z/4Z by φ(ā) = ā. First, we will show that φ is well defined. Let a and b be
representatives of the same congruence class in Z/8Z, i.e., a = b. This implies a = b+ 8k, where k is an
integer. Then we have φ(a) = φ(b+ 8k) = b+ 8k = b+ 4(2k) = b = φ(b). So, φ is well defined. Also,
φ is a homomorphism, since φ(a + b) = φ(a+ b) = a+ b = a + b = φ(a) + φ(b). Finally, φ is surjective
since any a ∈ Z/4Z, we have φ(a) = a.

Here, we have kerφ = {0, 4} and its fibers are φ−1(0) = {0, 4}, φ−1(1) = {1, 5}, φ−1(2) = {2, 6}, and
φ−1(3) = {3, 7}.

D&F Exercise 3.1.12

Let G be the additive group of real numbers, let H be the multiplication group of complex numbers of absolute
value 1 (the unit circle S1 in the complex plane) and let φ : G→ H be the homomorphism φ : r 7→ e2πir. Draw
the points on the real line which lie in the kernel of φ. Describe similarly the elements in the fibers of φ above
the points -1, i, and e4πi/3 of H. (Figure 1 of the text for this homomorphism φ is usually depicted using the
following diagram.)

The points on the real line that correspond with the kernel of φ are those where φ(r) = 1, i.e.,
kerφ = Z. And we can also note the following fibers: φ−1(−1) = φ−1(e2πi(1/2)) = 1/2 + Z, φ−1(i) =
φ−1(e2πi(1/4)) = 1/4 + Z, and φ−1(e4πi/3) = φ−1(e2πi(2/3)) = 2/3 + Z.

D&F Exercise 3.1.21

Let G = Z4 × Z4 be given in terms of the following generators and relations: G = ⟨x, y|x4 = y4 = 1, xy = yx⟩.
Let G = G/⟨x2y2⟩ (note that every subgroup of the abelian group G is normal).

(a) Show that the order of G is 8.

(b) Exhibit each element of G in the form xayb, for some integers a and b.

(c) Find the order of each of the elements of G exhibited in (b).

(d) Prove that G ∼= Z4 × Z2.

Let G = Z4 ×Z4. First, a perhaps-too-detailed point: the groups Z4 ×Z4 and ⟨x, y|x4 = y4 = 1, xy =
yx⟩ are not the same. In the former case, you have a product of two cyclic groups, where each are
individually abelian, one generated by x and the other generated by y. In the latter case, you have a
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non-product group, with two generators x and y, which commute with each other. But these groups are
isomorphic, i.e., Z4 × Z4 = {(x, y)|x4 = 1, y4 = 1} ∼= ⟨x, y|x4 = y4 = 1, xy = yx⟩, which we state without
proof. In this problem, we’ll have G refer to the latter representation.

Let G = G/⟨x2y2⟩. First, we can note that since x4 = y4 = 1, that ⟨x2y2⟩ = {1, x2y2}. In the answers
to this exercise, we refer to the table below

g ∈ G cosets of N = ⟨x2y2⟩ in G order

1 N, x2y2N 1

x xN, x3y2N 4

x2 x2N, y2N 2

x3 x3N, xy2N 4

y yN, x2y3N 4

x y xyN, x3y3N 2

x2y x2yN, y3N 4

x3y x3yN, xy3N 4

(128)

We will show the following:

(a) The order of G is 8, as can be seen from the above table.

(b) The elements of G are exhibited in the form xayb, for some integers a and b, the above table.

(c) The order of each element in (b) can be found in the table.

(d) Claim: G ∼= Z4 × Z2.

Proof: From the above table, it can be verified that the multiplication rules on G are consistent
with the following presentation: G = ⟨x, y|x4 = (xy)2 = 1, x̄ȳ = ȳx̄⟩. It is straightforward to verify
that G = ⟨x, xy⟩. This presentation is isomorphic to Z4 × Z2 = {(x, xy)|x4 = 1, (xy)2 = 1}.

D&F Exercise 3.1.22a

Prove that if H and K are normal subgroups of a group G then their intersection H ∩ K is also a normal
subgroup of G.

Let G be a group with normal subgroups H and K. We will show that H∩K is also a normal subgroup
of G. First, since H and K are subgroups, then H ∩ K is a subgroup (cf D&F Exercise 2.1.10a). Let
n ∈ H ∩K, so n ∈ H and n ∈ K. Let g ∈ G. Because H and K are both normal subgroups, we have
gng−1 ∈ H and gng−1 ∈ K, by definition. Therefore, gng−1 ∈ H ∩ K. Since this holds for all g ∈ G,
then H ∩K is a normal subgroup of G (cf D&F Theorem 3.1.6(5)).

D&F Exercise 3.1.36

Prove that if G/Z(G) is cyclic then G is abelian. [If G/Z(G) is cyclic with generator xZ(G), show that every
element of G can be written in the form xaz for some integer a ∈ Z and some element z ∈ Z(G).]

Let G be a group. Suppose G = G/Z(G) is cyclic. We will show that G is abelian. To begin, note
that elements of G can be represented as gZ(G), where g ∈ G is some representative of each coset of
Z(G) in G. Assume G is cyclic, and let xZ(G) be its generator, i.e., G = ⟨xZ(G)⟩. So, all elements of G
can be represented as (xZ(G))a = xaZ(G) (cf D&F Exercise 3.1.4), where a is an integer.

Let g1, g2 ∈ G. Since all elements of G are in some coset of Z(G) in G, then there exist a1, a2 ∈ Z and
z1, z2 ∈ Z(G) such that g1 = xa1z1 and g2 = xa2z2. So, since z1 and z2 commute with all elements in G,
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we have g1g2 = xa1z1x
a2z2 = xa2z2x

a1z1 = g2g1. Since this holds for all pairs of elements in G, then G is
abelian.

D&F Exercise 3.1.37

Let A and B be groups. Show that {(a, 1)|a ∈ A} is a normal subgroup of A×B and the quotient of A×B by
this subgroup is isomorphic to B.

Let A and B be groups and N = {(a, 1)|a ∈ A}. We will show the following:

(a) Claim: N � (A×B).

Proof: Let n = (a, 1) ∈ N , and let g = (x, y) ∈ A × B. Note that (x, y)−1 = (x−1, y−1). Then we
have gng−1 = (x, y)(a, 1)(x−1, y−1) = (xax−1, 1). Since A is closed under multiplication, we have
xax−1 ∈ A, so gng−1 = (xax−1, 1) ∈ N . Since this holds for all g ∈ A×B, then N � (A×B).

(b) Claim: (A×B)/N ∼= B.

Proof: We begin by discussing the structure of the cosets of N in the group (A × B). Here, we
can use the shorthand that N = (A, 1). Now, given an element (a, b) ∈ A × B, we have the coset
(a, b)N = (A, b). This notation emphasizes the point that it is the element b that identifies the
coset. Now we will proceed to show that there exists an isomorphism between (A×B)/N and B.

Let φ : (A×B)/N → B, where φ((A, b)) = b. First, we will show φ is well defined. Let (a1, b) and
(a2, b) be elements of the same coset ofN in A×B. Then we can note that φ((a1, b)N) = φ((a2, b)N)
implies φ((A, b)) = φ((A, b)). Therefore, φ is well defined.

Next, we will show that φ is a homomorphism. Let b1, b2 ∈ B. We can note φ((A, b1))φ((A, b1)) =
b1b2 = φ((A, b1b2)) = φ((A, b1)(A, b2)). Therefore, φ is a homomorphism.

Finally, we will show that φ is a bijection. First, we note that φ is injective since any two distinct
elements in the domain, e.g., (A, b1) and (A, b2) where b1 ̸= b2, will be mapped to different elements
in the range, i.e., b1 and b2, respectively. Therefore, φ is injective. Furthermore, given any element
b ∈ B, the preimage φ−1(b) = (A, b) is indeed a coset of N . Therefore, φ is surjective. Since φ is
both injective and surjective, therefore it is bijective.

Since we have shown that φ is a well-defined bijective homomorphism, it is therefore an isomor-
phism. So, (A×B)/N ∼= B, as desired.

D&F Exercise 3.1.42

Assume both H and K are normal subgroups of G with H ∩K = {1}. Prove that xy = yx for all x ∈ H and
y ∈ K. [Show x−1y−1xy ∈ H ∩K.]

Let G be a group with normal subgroups H and K. Let N = H ∩K, x ∈ H, and y ∈ K. We will
begin by showing the following result:

(i) Claim: x−1y−1xy ∈ N .

Proof: Because H is a normal subgroup, y−1xy ∈ H. Since x−1 ∈ H, then also x−1(y−1xy) ∈ H.
Because K is a normal subgroup, then y−1 ∈ K and x−1y−1x ∈ K. Then also (x−1y−1x)y ∈ K.
Since x−1y−1xy ∈ H and x−1y−1xy ∈ K, then x−1y−1xy ∈ H ∩K = N , as desired.

Now, suppose N = H ∩ K = {1}, then according to (i), we have x−1y−1xy = 1, i.e., xy = yx. This
follows for all elements of H and K.
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XVI. MORE ON COSETS AND LAGRANGE’S THEOREM

D&F Exercise 3.2.4

Show that if |G| = pq for some primes p and q (not necessarily distinct) then either G is abelian or Z(G) = 1.

Let G be a group, where |G| = pq and p and q are primes. We will show that either G is abelian or
Z(G) = 1. We will consider separately the cases when G is abelian or non-abelian.

First, if G is abelian, we are done.
On the other hand, if G is non-abelian, then we will show that Z(G) = 1. In this case, we can note

that Z(G) is a normal subgroup of G, so by Lagrange’s theorem, |Z(G)| divides |G|. This mean |Z(G)|
can either be pq, p, q, or 1. We will consider each of these cases:

• Suppose |Z(G)| = pq. Since there are only pq elements in G, this implies Z(G) = G. By the
definition of the centralizer, this means G is abelian, which contradicts our assumption that G is
non-abelian. Therefore |Z(G)| ≠ pq.

• Suppose |Z(G)| = p. We have |G/Z(G)| = |G|/|Z(G)| (cf D&F Sec. 3.2), so therefore |G/Z(G)| = q.
But if |G/Z(G)| is prime, then G/Z(G) is cyclic (cf D&F Corollary 3.10), and if G/Z(G) is cyclic,
then G is a abelian (cf D&F Exercise 3.1.36), which contradicts our assumption that G is non-
abelian. Therefore |Z(G)| ≠ p.

• Suppose |Z(G)| = q. The same argument as above follows with the roles of p and q reversed, so
we can conclude Z(G) ̸= q.

The only option left is Z(G) = 1, as desired.

D&F Exercise 3.2.6

Let H ≤ G and let g ∈ G. Prove that if the right coset Hg equals some left coset of H in G then it equals the
left coset gH and g must be in NG(H).

Let H ≤ G and let g ∈ G. We will show that if Hg = g′H, where g′ ∈ G, then Hg = gH. To begin,
suppose Hg = g′H for some g′ ∈ G. We can note that because 1 ∈ H, then g ∈ Hg. Then g ∈ Hg = g′H,
so there is some h ∈ H such that g = g′h. This implies g′ = gh−1. But now g′H = gh−1H = gH.
Therefore Hg = gH, as desired. From this, we can deduce g commutes with all elements in H, so
g ∈ NG(H), by definition.

D&F Exercise 3.2.8

Prove that if H and K are finite subgroups of G whose orders are relatively prime then H ∩K = {1}.

Let G be a group with subgroups H and K whose orders are relatively prime. We will show that
H ∩ K = {1}. To begin, we can note that both H and K are subgroups, so their intersection at least
contains the identity, i.e., their intersection is not empty. Let x ∈ H ∩ K. Here, ⟨x⟩ is a subgroup of
both H and K. From Lagrange’s theorem, this means |x| divides both the order of H and the order of
K. But since the orders of H and K are relatively prime, then |x| = 1, which means x can only be the
identity. Therefore, H ∩K = {1}.
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D&F Exercise 3.2.14

Prove that S4 does not have a normal subgroup of order 8 or a normal subgroup of order 3.

We will show the following:

(a) Claim: S4 does not have a normal subgroup of order 8.

Proof: We will proceed by contradiction. Assume S4 has a normal subgroup N with |N | = 8.
Interestingly, we can note from D&F Exercise 1.3.4 that S4 has 9 elements of order 2. But N is of
order 8, so N cannot contain all elements of order 2. Let σ be the element of order 2 not contained
in N . Here, ⟨σ⟩ = {1, σ} is a subgroup of order 2 where N ∩ ⟨σ⟩ = {1}. Because N is normal, we
have N⟨σ⟩ ≤ G (cf D&F Corollary 3.15), and since N ∩ ⟨σ⟩ = {1} then |N⟨σ⟩| = |N ||⟨σ⟩| (cf D&F
Proposition 3.13), i.e., |N⟨σ⟩| = 16. According to Lagrange’s theorem, 16 must divide 24. This is
not true. Therefore, S4 does not have a normal subgroup of order 8.

(b) Claim: S4 does not have a normal subgroup of order 3.

Proof: We will proceed by contradiction. Assume S4 has a normal subgroup N with |N | = 3.
Since N ≤ 3, and 3 is prime, then N is cyclic (cf D&F Corollary 3.10), i.e., it is generated by
one element. From D&F Exercise 1.3.4, we can see there are 8 such elements of S4 with order
3. So, N must be generated by one of these, call it x, and we can denote N = {1, x, x2}. Now,
there are enough elements of order 3 in S4 such that we can always pick another, call it x′, where
N ̸= H = {1, x′, (x′)2}. Here, |H| = 3 and N ∩ H = {1}. As an example, if N = ⟨(123)⟩, then
we can pick H = ⟨(234)⟩. Since N is normal, we have NH ≤ G (cf D&F Corollary 3.15), and
since N ∩ H = {1} then |NH| = |N ||H| (cf D&F Proposition 3.13), i.e., |NH| = 9. According
to Lagrange’s theorem, 9 must divide 24. This is not true. Therefore S4 does not have a normal
subgroup of order 3.

D&F Exercise 3.2.15

Let G = Sn and for fixed i ∈ {1, 2, · · · , n} let Gi be the stabilizer of i. Prove that Gi
∼= Sn−1.

Let G = Sn and for fixed i ∈ {1, 2, · · · , n} let Gi be the stabilizer of i. We will show Gi
∼= Sn−1. To

begin, we can note that Gi ≤ Sn (cf D&F Exercise 1.7.4). Specifically, Gi contains all elements of Sn that
leave the position of i fixed, i.e., it is the set of permutations on all the elements other than i. Therefore
|Gi| = n − 1. Now, Gi has the same order as Sn−1, and both are permutations on n − 1 elements, so
there is a natural bijection between them. Therefore Gi

∼= Sn−1.

D&F Exercise 3.2.16

Use Lagrange’s Theorem in the multiplicative group (Z/pZ)× to prove Fermat’s Little Theorem: if p is a prime
then ap ≡ a (mod p) for all a ∈ Z.

Let p be a prime and a ∈ Z. We will show ap ≡ a (mod p). To begin, we remind ourselves that
(Z/pZ)× = {a ∈ Z/pZ| gcd(a, p) = 1}. Here, p is prime, so (Z/pZ)× = {1, 2, · · · , p− 1}, and the order of
(Z/pZ)× is p− 1. We denote a ≡ a (mod p), and we will consider the following two cases:

• a = 0. When this is the case, then ap = ap = a is trivially satisfied, so ap ≡ a (mod p).

• a ̸= 0. Here, a ∈ (Z/pZ)×. Let |a| = k. This means ak = 1. Since ⟨a⟩ is a subgroup of (Z/pZ)×,
then according to Lagrange’s theorem there is some integer ℓ such that kℓ = p − 1. So we have
1 = ak = (ak)ℓ = akℓ = ap−1. So, ap−1 = 1, and multiplying both sides by a yields ap = ap = a.
Therefore, ap ≡ a (mod p).

Therefore ap ≡ p (mod p).



67

XVII. MORE ON HOMOMORPHISMS AND ISOMORPHISMS

Exercise 1

Prove that if G is a simple abelian group then G is isomorphic to Zp for some prime p.

Let G be a simple abelian group. We will show that G ∼= Zp for some prime p. To do so, we will first
show the following results:

(i) Claim: G has no nontrivial proper subgroups.

Proof: Since G is abelian, then all its subgroups are normal. Because G is simple, then by definition
its only normal subgroups are 1 and G itself. From these facts, we can conclude that G only has
two subgroups: 1 and G. Therefore, it has no nontrivial proper subgroups.

(ii) Claim: G = ⟨x⟩ for all x ∈ G where x ̸= 1.

Proof: From (i), we can conclude that G only has two subgroups: 1 and G. Let x ∈ G, where x ̸= 1.
Since ⟨x⟩ ≤ G, and ⟨x⟩ ̸= 1, then ⟨x⟩ = G. Note that x was an arbitrary nonidentity element. So
for all x ∈ G where x ̸= 1, we have ⟨x⟩ = G.

(iii) Claim: G is finite.

Proof: Let x ∈ G where x ̸= 1. Since x2 ∈ G, we can use (ii) to claim that ⟨x⟩ = G and ⟨x2⟩ = G,
so therefore ⟨x⟩ = ⟨x2⟩.
Now we will use the contrapositive of Theorem 2.7(2) in D&F: Let G = ⟨x⟩ be a cyclic group. If
⟨xa⟩ = ⟨xb⟩ for distinct nonnegative integers a and b, then G is finite.

From this, we can conclude that G is finite.

(iv) Claim: |G| is prime.

Proof: From (iii), we can claim that G is finite. From (i), we know that there are no subgroups of
G other than 1 and G itself.

We will now use the contrapositive of Theorem 2.7(3) in D&F: Let G be a finite cyclic group. If
there is not a subgroup of G of order a, then a does not divide |G|.
Let a be an integer where 1 < a < |G|. From the above theorem, we can conclude that because
there are no subgroups of order a, then a does not divide |G|. Therefore, |G| must be prime.

Using results from (ii), (iii), and (iv), we can say that G is a finite cyclic group of order p, where p is
prime. We can note that Zp is also a finite cyclic group of order p. So, using Theorem 2.4 in D&F, which
states that any two cyclic groups of the same order are isomorphic, we can conclude that G ∼= Zp, where
p = |G|.

Exercise 2

Write down some explicit surjective homomorphisms from Z6×Z2 onto the following groups. [You don’t need to
verify that these are surjective, or homomorphisms, but the idea is to get practice just writing down the maps.]

(a) Z2

(b) Z6

(c) Z3

(d) Z2 × Z2
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The following are examples of well-defined surjective homomorphisms from Z6×Z2 onto the specified
groups:

(a) f : Z6 × Z2 → Z2 where (a, b) 7→ ma+ nb and m and n are integers that are not simultaneously
even.

(b) f : Z6 × Z2 → Z6 where (a, b) 7→ ma+ 3b and m is any integer.

f : Z6 × Z2 → Z6 where (a, b) 7→ ma and m an integer such that gcd(6,m) = 1.

(c) f : Z6 × Z2 → Z3 where (a, b) 7→ ma and m is an integer such that gcd(3,m) = 1.

(d) f : Z6 × Z2 → Z2 × Z2 where (a, b) 7→ (3a, b).

Note: there is also the trivial surjective homomorphism f : Z6×Z2 → 1, where (a, b) 7→ 1 for all a, b ∈ Z.

Exercise 3

Suppose that φ is a homomorphism from a finite group G onto Z6 ×Z2. [Onto means φ is surjective.] Suppose
that the kernel of φ has order 5. Explain why G must have normal subgroups of orders 5, 10, 15, 20, 30, 60.
Try to do this by finding some appropriate homomorphisms and look at their kernels.

Let φ : G → Z6 × Z2, where φ is surjective and | kerφ| = 5. We will show that G must have normal
subgroups of orders 5, 10, 15, 20, 30, and 60. Before we begin, we will show the following result:

(i) Claim: Let φ : G→ G′ be a homomorphism. Then |G| = | kerφ||φ(G)|.
Proof: Let φ : G→ G′ be a homomorphism. From the First Isomorphism Theorem, we know there
is an isomorphism G/ kerφ ∼= φ(G), which implies |G/ kerφ| = |φ(G)|. By Lagrange’s theorem,
we also have |G| = |G/ kerφ|| kerφ|. Combining these two results, we have |G| = | kerφ||φ(G)|, as
desired.

(ii) Claim: Let φ : G→ G′ and ψ : G′ → H both be homomorphisms. Then the functional combination
ψ ◦ φ is a homomorphism.

Proof: Let φ : G → G′ and ψ : G′ → H be homomorphisms, and let a, b ∈ G. Then (ψ ◦
φ)(ab) = ψ(φ(ab)) = ψ(φ(a)φ(b)) = ψ(φ(a))ψ(φ(b)) = (ψ ◦ φ)(a)(ψ ◦ φ)(b). Therefore ψ ◦ φ is a
homomorphism.

Armed with this result, we are now ready to address the problem at hand. To illustrate the structure
of this problem, we can refer to the figure below:

[Not all of this diagram is used in the solution to this problem, but it’s nice to see how the result in (i)
can be applied due to the First Isomorphism Theorem.] This diagram illustrates that we have a surjective



69

homomorphism φ from G onto Z6 × Z2, a surjective homomorphism f from Z6 × Z2 onto H, along with
the functional combination of the two, f ◦φ, which, from (ii), is a surjective homomorphism that maps G
onto H. Here, f should be recognized as representing one of the homomorphisms in the previous Exercise,
where H can be the groups: 1, Z2, Z3, Z6 or Z2 ×Z2. There are natural projections that map from G to
G/ kerφ and from G to ker(f ◦ φ). From the First Isomorphism Theorem, there are isomorphisms from
G/ kerφ to Z6 × Z2 as well as G/ ker(f ◦ φ) to H.

Off the bat, we can note that since the kernel of a homomorphism is a normal subgroup (cf D&F
Exercise 3.1.1), i.e., kerφ�G, and since | kerφ| = 5, then kerφ is one of the normal subgroups of G we’re
looking for. Furthermore, since φ is surjective, then φ(G) = Z6 × Z2, so |φ(G)| = |Z6 × Z2| = 12. Using
the result from (i), we have |G| = | kerφ||φ(G)| = (5)(12) = 60.

Using the result from (i), we have |G| = | ker(f ◦φ)||(f ◦φ)(G)|. Because f ◦φ is surjective, (f ◦φ)(G) =
H, so then |G| = | ker(f ◦φ)||H|. Since H can be the various groups studied in the previous Exercise, we
can make the following table:

H |H| | ker(φ ◦ f)| = |G|/|H|
1 1 60

Z2 2 30

Z3 3 20

Z6 6 10

Z2 × Z2 4 15

(129)

Since ker(f ◦ φ)�G, we have found our remaining normal subgroups of G.

Exercise 4

Suppose there is a homomorphism from a finite group G onto Z10. Prove that G has normal subgroups of indexes
2 and 5.

Let φ : G → Z10 be a surjective homomorphism. We will show that G has normal subgroups of
indexes 2 and 5. We will use the same approach as the previous problem. To begin, we can note that the
following well-defined surjective homomorphisms exist: f : Z10 → Z2 where f(a) = a, and f : Z10 → Z5

where f(a) = a. [This works because 10 is a multiple of both 2 and 5.]

Because φ and f are surjective homomorphisms, then from (ii) in the previous Exercise, φ ◦ f is a
surjective homomorphism. Using (i) in the previous Exercise, we have |G| = | ker(f ◦ φ)||(f ◦ φ)(G)|.
Because f ◦ φ is surjective, then (f ◦ φ)(G) = H, so |G| = | ker(f ◦ φ)||H|. Now, ker(f ◦ φ)�G (cf D&F
Exercise 3.1.1), and the index of a normal subgroup of G is defined as [G : ker(f ◦φ)] = |G|/| ker(f ◦φ)|.
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Combining these two equations, we have [G : ker(f ◦ φ)] = |H|. Since we showed |H| can be 2 or 5, then
[G : ker(f ◦ φ)] is 2 or 5, as desired.

Exercise 5

If H is a normal subgroup of G and |H| = 2, prove that H is contained in the center of G. Use this to conclude
that A5 does not have a subgroup of order 2.

Let H be a normal subgroup of G and |H| = 2. We will first show that H is contained in the center of
G. Let g ∈ G. Here, H is small enough were we can determine the act of conjugation on all elements of
H. Denote H = {1, h}, where |h| = 2. Since H is a normal subgroup, then gHg−1 ⊆ H (D&F Theorem
3.7). So, we can conjugate the element of H one by one. First, g1g−1 = 1. Second, ghg−1 can only be 1
or h, but it cannot be 1, since this would imply gh = g and therefore h = 1, but this is a contradiction
since h ̸= 1. So, ghg−1 = h. Since the choice of g ∈ G was arbitrary, these conjugation relations imply
that all elements of H commute with all elements of G, so H ⊆ Z(G).

Next, we will use this result to show that A5 does not have a subgroup of order 2. Note that if it is
the case that Z(A5) = 1, then it is impossible that a subgroup of A5 of order 2 can exist, since in the
previous paragraph we proved that such a subgroup would be a subset of Z(A5). So, all we have to show
is Z(A5) = 1. To begin, we can note the fact brought up in D&F Section 3.5, which is An is a non-abelian
simple group for all n ≥ 5. [Do I need to prove this?] This means A5 only has normal subgroups of 1
and A5. Since the center of a group is automatically a normal subgroup, i.e., Z(A5)� A5, and since A5

is non-abelian, then the only possibility is Z(A5) = 1. Therefore, A5 cannot have a subgroup of order 2.

Exercise 6

Suppose that H is a normal subgroup of a finite group G. If G/H has an element of order n, show that G has
an element of order n. Show, by example, that the assumption that G is finite is necessary.

[This is the converse of D&F Exercise 3.1.5.] Let H be a normal subgroup of a finite group G, and let
x ∈ G/H. We can note that x can be represented as x = gH, where g ∈ G. Since G is finite, the order
of the elements of G/H are finite, so let |x| = n. This implies that n is the smallest positive integer such
that xn = (gH)n = H. We will show that G also has an element of order n.

To begin, we can note that G is finite, so let |g| = α. Using gα = 1 and D&F Exercise 3.1.4, this
implies H = gαH = (gH)α. Since n is the smallest positive integer such that (gH)n = H, then α must
be a multiple of n, i.e., there is a positive integer k such that nk = α.

We will now show that y = gk is our desired element of G of order n. First, we can note that
yn = (gk)n = gα = 1. So, |y| ≤ n. Suppose |y| = m, so m ≤ n. To show m = n, we will proceed by
contradiction. Assume m < n. Then 1 = ym = (gk)m = gkm. This means α|km, i.e., nk|km, which
implies n|m. This is a contradiction, since m < n. Therefore m = n, and we have |y| = n, as desired.

We can note that this result does not necessarily hold if G is infinite. As an example, consider when
G/N = Q/Z, which has elements of finite order even though G does not. To see why, consider an element
x = p/q + Z ∈ Q/Z, where p, q ∈ Z. Here, x has finite order because qx = p + qZ = 0 + Z, while Q has
infinite order.

Exercise 7

Suppose |G| = 30 and |Z(G)| = 5. What is the structure of G/Z(G)? How does your answer change if
|Z(G)| = 3? Generalize to the case that |G| = 2pq where p and q are distinct odd primes. [Use the fact, to be
proven later, that if p is an odd prime, then there are exactly two groups of order 2p (up to isomorphism): Z2p

and D2p.]
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Let G be a group where |G| = 30 and |Z(G)| = 5. We can note that by Lagrange’s theorem |G/Z(G)| =
|G|/|Z(G)| = 30/5 = 6. We can use the given fact that because 6 = 2 · 3, and 3 is an odd prime, then
there are exactly two groups of order 6 to which G/Z(G) could be isomorphic: Z6 or D6. However, if
G/Z(G) is isomorphic to Z6, which is a cyclic group, then according to D&F Exercise 3.1.36, we can
conclude that G is abelian. But if G is abelian, then |Z(G)| = |G|, which is contrary to our given fact
that |Z(G)| ≠ |G|. Therefore, G/Z(G) ∼= D6.

If instead |Z(G)| = 3, then |G/Z(G)| = |G|/|Z(G)| = 30/3 = 10. We can use the given fact that
because 10 = 2 ·5, and 5 is an odd prime, then there are exactly two groups of order 10 to which G/Z(G)
could be isomorphic: Z10 or D10. However, if G/Z(G) is isomorphic to Z10, which is a cyclic group,
then according to D&F Exercise 3.1.36, we can conclude that G is abelian. But if G is abelian, then
|Z(G)| = |G|, which is contrary to our given fact that |Z(G)| ≠ |G|. Therefore, G/Z(G) ∼= D10.

More generally, suppose |G| = 2pq, where p and q are distinct odd primes. Before we proceed, we will
prove the following result:

(i) Claim: Let G be a finite abelian group, where |G| = pq and p and q are distinct primes. Then G
is cyclic.

Proof: Let G be a finite abelian group, where |G| = pq and p and q are distinct primes. Since G
is finite and p and q are primes dividing |G|, then by Cauchy’s Theorem (cf D&F Theorem 11)
we can say that G has an element x ∈ G where |x| = p and y ∈ G where |y| = q. Now consider
the element xy ∈ G. Because G is abelian, and gcd(p, q) = 1, then xy has order lcm(p, q) = pq.
Therefore, |⟨xy⟩| = |G|, so therefore G is cyclic.

Because Z(G) ≤ G, then by Lagrange’s theorem, |Z(G)| can be 1, 2, q, p, 2q, 2p, or 2pq. We can go
through these cases one by one:

• Suppose |Z(G)| = 1. Then |G/Z(G)| = 2pq, and we cannot say anything more about the structure
of G or G/Z(G).

• Suppose |Z(G)| = 2. Then |G/Z(G)| = |G|/|Z(G)| = pq. We can also note that because p and q
are prime, we can use D&F Exercise 3.2.4 to claim that G/Z(G) is abelian. Furthermore, because
p and q are distinct primes, we can use (i) to claim G/Z(G) is cyclic. If G/Z(G) is cyclic, then
according to D&F Exercise 3.1.36, G is abelian. However, if G is abelian, then Z(G) = G, i.e.,
|G/Z(G)| = |G|, which is a contradiction. Therefore, there is no such group G with Z(G) = 2.

• If |Z(G)| = p, then we have |G/Z(G)| = |G|/|Z(G)| = 2q, and since q is an odd prime, then
G/Z(G) could be isomorphic to Z2q or D2q. Suppose G/Z(G) were isomorphic to Z2q, which is a
cyclic group, then then according to D&F Exercise 3.1.36, we can conclude that G is abelian. But
if G is abelian, then Z(G) = G, i.e., |Z(G)| = |G|. But we’re given |G| ̸= |Z(G)|, so we’re dealt a
contradiction. Therefore G/Z(G) ∼= D2q. [A similar argument can be followed when |Z(G)| = q,
just with the roles of p and q swapped.]

• If |Z(G)| = 2p, then we have |G/Z(G)| = |G|/|Z(G)| = q. Because |G/Z(G)| is prime, we can use
D&F Corollary 3.10 to claim that G/Z(G) is cyclic. Therefore, G/Z(G) ∼= Zq. If G/Z(G) is cyclic,
then according to D&F Exercise 3.1.36, G is abelian. However, if G is abelian, then Z(G) = G, i.e.,
|G/Z(G)| = |G|, which is a contradiction. Therefore, there is no such group G with Z(G) = 2p.
[A similar argument can be followed when |Z(G)| = 2q, just with the roles of p and q swapped.]

• Suppose |Z(G)| = 2pq. We have G/Z(G) = |G|/|Z(G)| = 1.
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XVIII. TRANSPOSITIONS AND THE ALTERNATING GROUP

Exercise 1

Write a given permutation as a product of transpositions. For instance, (12345)(678).

(12345)(678) = (1345)(12)(68)(67) (130)

= (145)(13)(12)(68)(67) (131)

= (15)(14)(13)(12)(68)(67) (132)

Exercise 2

Let σ and (a1a2 · · · ak) be permutations in Sn. Prove that σ(a1a2 · · · ak)σ−1 = (σ(a1)σ(a2) · · ·σ(ak)).

Let σ and (a1a2 · · · ak) be permutations in Sn. We will show that σ(a1a2 · · · ak)σ−1 =
(σ(a1)σ(a2) · · ·σ(ak)). In what follows, we will refer to the left-hand side of this equation as “LHS”,
and the right-hand side will be “RHS”. To do this, it will suffice to show that LHS and RHS have the
same effect when acting on any integer i where 1 ≤ i ≤ n. Since permutations are bijections, we can let
i = σ(j), where j is some other integer 1 ≤ j ≤ n. Now we will consider two cases: when j is one of the
integers in (a1a2 · · · an) and when it is not. First, when j is one of the integers in (a1a2 · · · an), we can
let j = aℓ, where 1 ≤ ℓ ≤ n, so

σ(a1a2 · · · aℓ · · · ak)σ−1i = σ(a1a2 · · · aℓ · · · an)σ−1σ(j) (133)

= σ(a1a2 · · · aℓ · · · ak)σ−1σ(aℓ) (134)

= σ(a1a2 · · · aℓ · · · ak)aℓ (135)

= σ(aℓ+1 (mod k)) (136)

(σ(a1)σ(a2) · · ·σ(aℓ) · · ·σ(ak))i = (σ(a1)σ(a2) · · ·σ(aℓ) · · ·σ(ak))σ(j) (137)

= (σ(a1)σ(a2) · · ·σ(aℓ) · · ·σ(ak))σ(aℓ) (138)

= σ(aℓ+1 (mod k)) (139)

In this case, we see indeed the LHS and RHS have the same effect on i. On the other hand, when j is
not one of the integers in (a1a2 · · · an), we have

σ(a1a2 · · · ak)σ−1i = σ(a1a2 · · · an)σ−1σ(j) (140)

= σ(a1a2 · · · ak)j (141)

= σ(j) (142)

(σ(a1)σ(a2) · · ·σ(ak))i = (σ(a1)σ(a2) · · ·σ(ak))σ(j) (143)

= σ(j) (144)

The last equality follows from the fact that if j /∈ {a1, a2, · · · , ak}, then σ(j) ̸∈ {σ(a1), σ(a2), · · · , σ(ak)}
since σ is a bijection. Therefore, the LHS and RHS have the same effect on an arbitrary integer i where
1 ≤ i ≤ n. Therefore, we can conclude σ(a1a2 · · · ak)σ−1 = (σ(a1)σ(a2) · · ·σ(ak)).

As a corollary, it also follows that even given a disjoint permutation, we have:

σ(a1a2 · · · ak)(b1b2 · · · bℓ)σ−1 = σ(a1a2 · · · ak)σ−1σ(b1b2 · · · bℓ)σ−1 (145)

= (σ(a1)σ(a2) · · ·σ(ak))(σ(b1)σ(b2) · · ·σ(bℓ)) (146)
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D&F Exercise 3.5.2

Prove that σ2 is an even permutation for every permutation σ.

Every permutation σ is either even or odd. The act of squaring the permutation σ2 has the effect of
doubling the number of transpositions, always resulting in an even number of transpositions. Therefore,
σ2 is always an even permutation.

Alternatively, we can note that ϵ(σ) is a homomorphism ϵ : Sn → {±1} (cf D&F Proposition 23).
Therefore, ϵ(σ2) = ϵ(σ)2 = +1, so σ2 is even.

D&F Exercise 3.5.3

Prove that Sn is generated by {(i i+ 1)|1 ≤ i ≤ n− 1}. [Consider conjugates, viz. (23)(12)(23)−1.]

We will show that Sn is generated byAn = {(i i+1)|1 ≤ i ≤ n−1}. First, we can note that any element
of Sn can be written as a product of transpositions, i.e., Sn is generated by the set of transpositions, i.e.,
Tn = {(ij)|1 ≤ i < j ≤ n}. So, all we have to show is that any element of T can be generated by An.

First, let’s do a warm up. Say we pick element (i i + 1) ∈ An, and we conjugate it with another
element (i+ 1 i+ 2) ∈ An:

(i+ 1 i+ 2)(i i+ 1)(i+ 1 i+ 2) = (i i+ 2) (147)

Now we have produced an element in Tn, but not in An. Note that the first entry stayed the same, but
the second entry increased by 1. Say we kept repeating this process of conjugation with elements from
An. Then we could produce any element (ij) ∈ Tn. More formally, let k = j − i:

(ij) = (i+ (k − 1) i+ k) · · · (i+ 1 i+ 2)(i i+ 1)(i+ 1 i+ 2) · · · (i+ (k − 1) i+ k) (148)

So, we have shown that an transposition can be generated by elements of An, so therefore Sn is as well.

D&F Exercise 3.5.9

Prove that the (unique) subgroup of order 4 in A4 is normal and is isomorphic to V4.

We will show that the (unique) subgroup of order 4 in A4 is normal and is isomorphic to V4. Consider
the set H = {1, (12)(34), (13)(24), (14)(23)}. Note that H contains the only elements of A4 that are order
2, i.e., the three double-transpositions are their own inverses.

First, we will show that H is a normal subgroup. Since H also contains the identity and the set is
closed under multiplication, then it is a subgroup. To prove normality, let h ∈ H, where h ̸= 1. Let
g ∈ A4, and we can note that under conjugation ghg−1 is still an element of order 2 (cf D&F Exercise
1.1.22). Since H contains all the elements of order 2, then H is normal.

Next, we will show that H ∼= V4. We can note the result from D&F Exercise 2.5.10: Any group G
of order 4 is either isomorphic to Z4 or V4. Since |H| = 4, then this result claims that either H is
isomorphic to either Z4 or V4. Since Z4 has an element of order 4, and since H has no element of order
4, then H ∼= V4.

XIX. GROUP ACTIONS AND PERMUTATION REPRESENTATIONS

D&F Exercise 4.1.4

Let S3 act on the set Ω of ordered pairs: {(i, j)|1 ≤ i, j ≤ 3} by σ((i, j)) = (σ(i), σ(j)).
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(a) Find the orbits of S3 on Ω.

(b) For each σ ∈ S3 find the cycle decomposition of σ under this action (i.e., find its cycle decomposition when
σ is considered as an element of S9 – first fix a labeling of these nine ordered pairs.)

(c) For each orbit O of S3 acting on these nine points pick some a ∈ O and find the stabilizer of a in S3.

Let S3 act on the set Ω of ordered pairs: {(i, j)|1 ≤ i, j ≤ 3} by σ((i, j)) = (σ(i), σ(j)).

(a) There are two orbits of S3 on Ω. To illustrate, consider the elements of S3 acting on (11): e · (11) =
(11), (12) · (11) = (22), (23) · (11) = (11), (13) · (11) = (33). So, the orbit of (11) is O1 =
{(11), (22), (33)}. This is the same orbit as (22) and (33). Next, consider the elements of S3 acting
on (12) : e · (12) = (12), (12) · (12) = (21), (13) · (12) = (32), (23) · (12) = (13), (123) · (12) = (23),
(132) · (12) = (31). So, the orbit of (12) is O2 = {(12), (21), (23), (32), (13), (31)}. This is the same
orbit as (21), (13), (31), (23), and (32).

(b) If we use the following labeling: 1 = (12), 2 = (21), 3 = (23), 4 = (32), 5 = (13), 6 = (31),
7 = (11), 8 = (22), 9 = (33), we have the following cycle decomposition of σ ∈ S9 under this
action:

g ∈ S3 σ ∈ S9

e e

(12) (12)(35)(46)(78)

(23) (15)(26)(34)(89)

(13) (14)(23)(56)(79)

(123) (136)(245)(789)

(132) (136)(245)(798)

(149)

(c) First, we’ll pick 7 ∈ O1. Here, the stabilizer of (11) under this action is {e, (22), (33)}, since these
are the elements of S3 that act trivially on 7. Next, we’ll pick 1 ∈ O2 (note: this is not the identity,
it is a label associated with an element in Ω), where its stabilizer is {e}.

XX. GROUP ACTING ON THEMSELVES BY LEFT MULTIPLICATION

D&F Exercise 4.2.10

Prove that every non-abelian group of order 6 has a non-normal subgroup of order 2. Use this to classify groups
of order 6. [Produce an injective homomorphism into S3.]

Let G be a group of order 6. We will show that either G ∼= Z6 or G ∼= D6.
First, suppose G is abelian. We will show G ∼= Z6. From (i) in D&F Exercise 7 above, we can use

the result: if G is a finite abelian group, where G = pq and p and q are distinct primes, then G is cyclic.
From this, we can immediately claim that since 6 = 2 · 3, and 2 and 3 are distinct primes, then G is
cyclic, i.e., G ∼= Z6.

Next, suppose G is non-abelian. We will show G ∼= D6. From D&F Theorem 3.12 (Sylow), we can
note that G must have at least one subgroup of order 2, call it H = {1, x}. Next, consider the set of cosets
of H, i.e., A = {H, g1H, g2H}, where g1, g2 ∈ G are representatives of their respective coset. (Since cosets
partition the group, we have now labeled all of our group elements, G = {1, x, g1, g1x, g2, g2x}.) Consider
the group action f : G×A→ A, where g ·a 7→ ga. Since f is a group action, then there is a homomorphism
φ : G→ S3. Now we will determine what elements are contained in kerφ = {g ∈ G|g · a = a, a ∈ A}. Let
g ∈ kerφ. Then gH = H, so we can conclude that g ∈ H = {1, x}. We want to exclude the possibility
that g = x. We will proceed by contradiction. Assume g = x. Because g is in the kernel, we must have
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gg1H = g1H = xg1H, so xg1 ∈ g1H, which implies x ∈ g1Hg
−1, i.e., x = 1 (which is a contradiction) or

x = g1xg
−1
1 , so x commutes with g1. The same argument follows to conclude that x commutes with g2.

So, x commutes with all elements of G, and the center of the group Z(G) ̸= 1. Since |G| = 6 = 2 ·3, and 2
and 3 are primes, then either G is abelian or Z(G) = 1 (cf D&F Exercise 3.2.4). But G is non-abelian, and
we showed that Z(G) ̸= 1, so this is a contradiction. So, g = 1. Therefore, kerφ = 1, and φ is therefore
injective. Since there are 6 elements in G and there are 6 elements in S3, then φ is an isomorphism.
Therefore, G ∼= S3. And since S3 ∼= D6, then G ∼= D6.

From this, we can deduce that every non-abelian group G of order 6 has a non-normal subgroup of
order 2, since G is isomorphic to D6, which itself has a non-normal subgroup of order 2, i.e., {1, s}.

XXI. SYLOW THEOREMS

JG Exercise 24.2

If a is a group element, prove that every element in cl(a) has the same order as a.

Let G be a finite group and a ∈ G. Here, cl(a) = {gag−1|g ∈ G}. An element and its conjugate have
the same order, i.e., |a| = |gag−1| for all g ∈ G (cf D&F Exercise 1.1.21). Therefore, all elements of cl(a)
have the same order as a.

[This also follows from the fact that conjugation by a fixed element is an isomorphism.]

JG Exercise 24.3

Let a be a group element of even order. Prove that a2 is not in cl(a).

Let G be a group with element a of even order. That is, |a| = 2k, where k ∈ Z+. We will show
a2 /∈ cl(a). First, we can note that |a2| = 2k/ gcd(2, 2k) (cf D&F Proposition 2.5). Since gcd(2, 2k) > 1,
then |a2| ≠ 2k, i.e., a and a2 do not have the same order. Using JG Exercise 24.2, then we can conclude
that a and a2 cannot be in the same conjugacy class.

JG Exercise 24.7

Show that Z2 is the only group that has exactly two conjugacy classes.

Suppose a group G has two conjugacy classes. We will show |G| = 2. To begin, we note that the
identity is always in its own conjugacy class, so we can express the class equation for G as:

|G| = 1 + [G : CG(a)] (150)

where a ∈ G is a representative of the conjugacy class to which a belongs. From Lagrange’s theorem, we
also have

|G| = |CG(a)|[G : CG(a)]. (151)

For notational simplicity, let x = |G| and b = |CG(a)|, noting that x and b are positive integers. Solving
for [G : CG(a)] in the second above equation and inserting it into the first equation yields x = 1 + x/b,
i.e, x = b/(b − 1). Since x must be an integer, this forces b/(b − 1) to be an an integer, and the only
integer where this is true is when b = 2. Therefore x = 2, and thus |G| = 2.
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JG Exercise 24.8

What can you say about the number of elements of order 7 in a group of order 168 = 8 · 3 · 7?

Consider a group of order 168 = 7 · 24. Since 7 does not divide 24, then by Sylow’s Third Theorem,
n7 ≡ 1 (mod 7) and n7|24. The only values for n7 that satisfy these conditions are n7 = 1 or 8. Since
these subgroups of order 7 are of prime order, then they are cyclic (cf D&F Corollary 3.10), and every
non-identity element in these cyclic subgroup has order 7 (cf D&F Proposition 2.5). Therefore, when
n7 = 1, there are 6 elements with order 7. When n7 = 8, we need to determine the intersection between
these subgroups. Let P1 and P2 be any two of these cyclic Sylow 7-subgroups. We can note that the
intersection P1∩P2 is itself a subgroup (cf D&F Exercise 2.1.10), so by Lagrange’s theorem, it must have
order 1 or 7. Since Sylow ensures that these are distinct subgroups, then only P1 ∩ P2 = {1}. So, when
n7 = 8, we have 8 · (7− 1) = 48 elements of order 7.

JG Exercise 24.12

Determine the class equation for non-abelian groups of orders 39 and 55.

Let G be a non-abelian group of order 39 = 3 · 13. We will determine its class equation. First, the
class equation takes the form

|G| = |Z(G)|+
∑
a

[G : CG(a)] (152)

where a is a representative of a conjugacy class outside the center. Since Z(G) is a subgroup of G, by
Lagrange’s theorem, we have the following cases to consider:

• |Z(G)| = 1.

• |Z(G)| = 3. Here, |G/Z(G)| = 13, which is prime, so G/Z(G) is cyclic, and therefore G is abelian.
But this is a contradiction, so |Z(G)| ≠ 3.

• |Z(G)| = 13. Here, |G/Z(G)| = 3, which is prime, so G/Z(G) is cyclic, and therefore G is abelian.
But this is a contradiction, so |Z(G)| ≠ 13.

• |Z(G)| = 39. If |Z(G)| = 39, then the entire group is in the center, so the group is abelian, which
is a contradiction.

So, |Z(G)| = 1. Next, by Lagrange’s theorem, [G : CG(a)] must divide 39. We know [G : CG(a)] ̸= 1,
otherwise a would be in the center of G, which was already counted. And [G : CG(a)] ̸= 39, since
[G : CG(a)] = |G|/|CG(a)|, and ⟨a⟩ ≤ CG(a), so because |a| > 1, then |CG(a)| > 1. So, [G : CG(a)]
can either be 3 or 13, so we can write the class equation like: 39 = 1 + 13x + 3y, where x and y are
positive integers. It turns out there is only one solution: x = 2, y = 4. So the class equation for G is:
39 = 1 + 13 + 13 + 3 + 3 + 3 + 3.

Let G be a non-abelian group of order 55 = 5 · 11. We will determine its class equation. The same
arguments can be used to show that Z(G) = 1 and [G : CG(a)] is 5 or 11. We can write the class equation
like: 55 = 1+11x+5y, where x and y are positive integers. There is only one solution: x = 4 and y = 2.
So the class equation for G is: 55 = 1 + 11 + 11 + 11 + 11 + 5 + 5.

JG Exercise 24.13

Determine which of the equations below could be the class equation given in the proof of [JG] Theorem 24.2. For
each part, provide your reasoning.
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(a) 9 = 3 + 3 + 3

(b) 21 = 1 + 1 + 3 + 3 + 3 + 3 + 7

(c) 10 = 1 + 2 + 2 + 5

(d) 18 = 1 + 3 + 6 + 8

JG Theorem 24.2 is: Let G be a nontrivial finite group whose order is a power of a prime p. Then
Z(G) has more than one element. The version of the class equation that appears in the proof for this
theorem is |G| = |Z(G)| +

∑
a |G : CG(a)|, so I believe this means that the first term on the right-hand

side of this version of the class equation is the value of |Z(G)|.

(a) 9 = 3+ 3+ 3. Here, the order of the group is the square of a prime, so the group is abelian (cf JG
Corollary of Theorem 24.4). But if the group is abelian, then every element of the group is in the
center, so the class equation must be 9 = 1 + 1 + · · · + 1. So, 9 = 3 + 3 + 3 is not a feasible class
equation.

(b) 21 = 1 + 1 + 3 + 3 + 3 + 3 + 7. Here, 21 is not a power of a prime, so JC Theorem 24.2 does not
apply. Furthermore, for p−groups, the sizes of the non-central classes have to be powers of the
same p, and this example mixes different primes.

(c) 10 = 1 + 2 + 2 + 5. Here, 10 is not a power of a prime, so JC Theorem 24.2 does not apply.

(d) 18 = 1 + 3 + 6 + 8. Here, 18 is not a power of a prime, so JC Theorem 24.2 does not apply.

JG Exercise 24.14

Exhibit a Sylow 2-subgroup of S4. Describe an isomorphism from this group to D8.

Here |S4| = 4! = 24 = 23 · 3, so by the First Sylow Theorem, S4 must have a Sylow 2-subgroup of
order 8. An explicit representation of such a Sylow 2-subgroup is P = ⟨(1234), (13)⟩. One can explicitly
check by hand that these two elements generates a subgroup of order 8: 1, r = (1234), r2 = (13)(24),
r3 = (1432), s = (13), sr = (12)(34), sr2 = (24), sr3 = (14)(23).

As the notation above suggests, there is an isomorphism between D8 and P . Recall D8 = ⟨r, s|r4 =
1, s2 = 1, (sr)2 = 1⟩. Define the map φ : D8 → P , where r 7→ (1234) and s 7→ (13). First, we can check
the relations: r4 = (1234)4 = 1, s2 = (13)2 = 1, and (sr)2 = ((13)(1234))2 = 1. Since the relations match,
φ is a homomorphism. The image of φ contains (1234) and (13), which generate P , so φ is surjective.
Since |D8| = |P | = 8, then φ is a isomorphism.

JG Exercise 24.15

Suppose that G is a group of order 48. Show that the intersection of any two distinct Sylow 2-subgroups of G
has order 8.

Let G be a group of order 48 = 24 · 3. By the Third Sylow Theorem, n2 ≡ 1 (mod 2) and n2|3. This
restricts n2 = 1, 3. We will show that the intersection of any two Sylow 2-subgroups of G will have an
intersection of order 8.

If n2 = 1, then the statement is trivially true, so we will proceed by assuming n2 = 3. Take any
two distinct Sylow 2-subgroups of order 16, P1, P2 ∈ Syl2(G). By D&F Proposition 3.13, we have
|P1P2| = |P1||P2|/|P1 ∩ P2| = 162/|P1 ∩ P2|. But P1P2 ⊆ G. So, |P1P2| = 162/|P1 ∩ P2| ≤ 48, and
therefore |P1 ∩ P2| ≥ 162/48 = 16/3. Also, P1 ∩ P2 ≤ P1, and |P1| = 16 = 24, so by Lagrange’s theorem
|P1 ∩ P2| = 2a, where 1 ≤ a ≤ 4. So, we have the constraints |P1 ∩ P2| ≥ 16/3 and |P1 ∩ P2| = 2a, where
1 ≤ a ≤ 4. The only possibilities are |P1 ∩ P2| = 8 or 16. But if |P1 ∩ P2| = 16, then P1 and P2 are not
distinct subgroups, since they both have order 16. Therefore, |P1 ∩ P2| = 8.
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JG Exercise 24.16

Find all the Sylow 3-subgroups of S4.

All groups of order 3 are isomorphic to Z3. So, the subgroups of S4 of order 3 are just cyclic permu-
tations on 3 elements. So, here are all these order-3 subgroups of S4: {1, (123), (132)}, {1, (134), (143)},
{1, (234), (243)}, and {1, (124), (142)}.

JG Exercise 24.21

Suppose that G is a group of order 168. If G has more than one Sylow 7-subgroup, exactly how many does it
have?

Let G be a group of order 168 = 23 · 3 · 7. By the Third Sylow Theorem, n7 ≡ 1 (mod 7) and n7|24,
so this means n7 = 1 or 8. So, if n7 ̸= 1, then n7 = 8.

JG Exercise 24.22

Show that every group of order 56 has a proper nontrivial normal subgroup.

Let G be a group of order 56 = 23 · 7. By the Third Sylow Theorem, then n7 ≡ 1 (mod 7) and n7|8.
The only possibility is n7 = 1, 8. If n7 = 1, then this subgroup is a proper normal subgroup (JG Corollary
p. 393), and we are done.

Now we will consider the case when n7 = 8. Note by the First Sylow Theorem, G must have a Sylow
2-subgroup of order 8, call it P2, and its nontrivial elements must have a order that divides 8. If instead
n7 = 8, then we can note the Sylow 7-subgroups have trivial overlap among themselves (because any
intersection is a subgroup of order dividing 7), so there are 8(7 − 1) = 8 elements of order 7 in G, and
one of these is the identity. These 8 leftover elements must make up P2, since it’s guaranteed to exist.
Therefore, when n7 = 8, there is a single Sylow 2-subgroup, so therefore it is normal.

JG Exercise 24.27

How many Sylow 3-subgroups of S5 are there? Exhibit five.

Just as in a previous exercise [JG Exercise 24.16], all groups of order 3 will be isomorphic to Z3, so
we just have to count the number of subsets of 3 elements on which we can do cyclic permutations. For
a set of 5 elements, there are

(
5
3

)
= 5!/(3!2!) = 10 such subsets. Here are 5 of them: {1, (123), (132)},

{1, (134), (143)}, {1, (234), (243)}, {1, (124), (142)}, and {1, (125), (152)}.

JG Exercise 24.30

Prove that a group of order 175 is Abelian.

Let G be a group of order 175 = 52 · 7. We will show that G is abelian. By the Third Sylow Theorem,
n5 ≡ 1 (mod 5) and n5|7, so n5 = 1, and call this subgroup H. Likewise, n7 ≡ 1 (mod 7) and n7|25, so
n7 = 1, and call this subgroup K. Let’s collect some facts:

(i) Claim: H and K are both normal subgroups.

Proof: H is the only Sylow 5-subgroup, so H�G. Also, K is the only Sylow 7-subgroup, so K�G
(cf JG Corollary p. 393).
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(ii) Claim: H and K are abelian.

Proof: Since |H| = 25 = 52, and 5 is prime, then H is abelian (cf JG Corollary p. 389). Since
|K| = 7, and 7 is prime, then K is cyclic (cf D&F Corollary 3.10), and so K is abelian.

(iii) Claim: H ∩K = 1.

Proof: Since gcd(|H|, |K|) = gcd(25, 7) = 1, then H ∩K = 1 (cf D&F Exercise 3.2.8).

(iv) Claim: HK = G.

Proof: We have |HK| = |H||K|/|H ∩ K| (cf D&F Proposition 3.13). From (iii), H ∩ K = 1, so
|HK| = |H||K|. But |H||K| = 175 = |G| and because HK ⊆ G, therefore HK = G.

(v) Claim: hk = kh for all h ∈ H and k ∈ K.

Proof: From (i) both H and K are normal subgroups of G, and from (iii) H ∩K = 1, then hk = kh
for all h ∈ H and k ∈ K (cf D&F Exercise 3.1.42).

Because G = HK from (iv), hk = kh for all h ∈ H and k ∈ K from (v), and H and K are both abelian
from (ii), we can conclude that G is abelian, i.e., a group of order 175 is abelian.

JG Exercise 24.39

Show that the center of a group of order 60 cannot have order 4.

Let G be a group of order 60. We will show that |Z(G)| ≠ 4. We will proceed by contradiction.
Assume Z(G) = 4. Then |G/Z(G)| = 15. From the Third Sylow Theorem, the number of Sylow p-
subgroups of G/Z(G) are n5 = 1 (call it H, which has order 5) and n3 = 1 (call it K, which has order
3). Let’s collect some facts:

(i) Claim: H and K are both normal subgroups of G/Z(G).

Proof: H and K are both normal subgroups of G/Z(G) because they are the unique Sylow p-
subgroups of order 5 and 3, respectively (cf JG Corollary p. 393).

(ii) Claim: H and K are cyclic, i.e., H ∼= Z5 and K ∼= Z3.

Proof: Since |H| = 5, and 5 is prime, then H is cyclic (cf D&F Corollary 3.10), i.e., H ∼= Z5. Since
|K| = 3, and 3 is prime, then K is cyclic (cf D&F Corollary 3.10), i.e., K ∼= Z3.

(iii) Claim: H ∩K = 1.

Proof: Since gcd(|H|, |K|) = gcd(5, 3) = 1, then H ∩K = 1 (cf D&F Exercise 3.2.8).

(iv) Claim: G/Z(G) = HK.

Proof: Since H and K are subgroups, |HK| = |H||K|/|H ∩K| (cf D&F Proposition 3.13). From
(iii), then |HK| = |H||K| = 15 = |G/Z(G)|, so therefore G/Z(G) = HK.

(v) Claim: For normal subgroups H and K with H ∩K = 1, HK is a subgroup and HK ∼= H ×K.

Proof: This is D&F Proposition 5.8.

(vi) Claim: G/Z(G) ∼= Z3 × Z5.

Proof: From (iv) we have G/Z(G) = HK. From (i) and (iii), we can use (v) to say HK ∼= H ×K.
Therefore, G/Z(G) ∼= H ×K. From (ii), we therefore have G/Z(G) ∼= Z3 × Z5.
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(vii) Claim: G/Z(G) is cyclic.

Proof: From (vii), G/Z(G) ∼= Z3 × Z5. Since gcd(3, 5) = 1, then Z3 × Z5
∼= Z15, so G/Z(G) is

cyclic.

From (viii), G/Z(G) is cyclic, so G is abelian (cf D&F Exercise 3.1.36). However, if G is an abelian group
of order 60, then |Z(G)| = 60, which is a contradiction. Therefore, |Z(G)| ≠ 4.

XXII. FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS

JG Exercise 11.1

What is the smallest positive integer n such that there are two non isomorphic groups of order n? Name the
two groups.

We’ll step through groups of increasing order, starting with 1, and analyze each in turn. Groups of
size one are just the trivial group, and there is only one of these. There is one group of order two, i.e., Z2.
There is only one group of order 3, i.e., Z3. There are two abelian groups of order 4, which we know from
the Fundamental Theorem of Finite Abelian Groups, i.e., Z4 and Z2 × Z2, which are not isomorphic.

JG Exercise 11.4

Calculate the number of elements of order 2 in each of Z16, Z8 ×Z2, Z4 ×Z4, and Z4 ×Z2 ×Z2. Do the same
for elements of order 4.

In the following, I’ll use the Z/nZ notation for Zn (since these groups are isomorphic). So, 0 is the
identity and 1 is the generator.

For Z16, the only element of order 2 is 8. The elements of order 4 are 4 and 4.
For Z8 × Z2, the elements of order 2 are (0, 1), (4, 0), and (4, 1). The elements of order 4 are (2, 0),

(2, 1), (6, 0), and (6, 1).
For Z4 × Z4, the elements of order 2 are (2, 0), (0, 2), and (2, 2). The elements of order 4 are any

element that contains a 1 or 3 in either slot; there are 16 of these.
For Z4 ×Z2 ×Z2, the elements of order 2 are (2, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (2, 1, 0), (2, 0, 1), and

(2, 1, 1). The elements of order 4 are (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1), (3, 0, 0), (3, 1, 0), (3, 0, 1), and
(3, 1, 1).

JG Exercise 11.5

Prove that any abelian group of order 45 has en element of order 15. Does every abelian group of order 45 have
an element of order 9?

Given an abelian group G or order 45, it can isomorphic to Z9 × Z5 or Z3 × Z3 × Z5. If the former
group, an element of order 15 is (3, 1), and an element of order 9 is (1, 0). If the latter group, an element
of order 15 is (1, 0, 1), and there is no element of order 9. Therefore, all abelian groups of order 45 have
an element of order 15, but not all have an element of order 9.

JG Exercise 11.10

Find all abelian groups (up to isomorphism) of order 360.

Using the Fundamental Theorem of Finite Abelian Groups as articulated in JG, the list of non-
isomorphic abelian groups of order 360 are:
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1. Z2 × Z2 × Z2 × Z3 × Z3 × Z5,

2. Z4 × Z2 × Z3 × Z3 × Z5,

3. Z8 × Z3 × Z3 × Z5,

4. Z2 × Z2 × Z2 × Z9 × Z5,

5. Z4 × Z2 × Z9 × Z5,

6. Z8 × Z9 × Z5.

JG Exercise 11.11

Prove that every finite abelian group can be expressed as the direct product of cyclic groups of orders n1, n2, · · ·nt,
where ni+1 divides ni for i = 1, 2, · · · , t− 1.

A quick example: consider a cyclic group of order 45. This group can be isomorphic to Z9 × Z5 or
Z3×Z3×Z5. Recall the combination rule: Zn×Zm

∼= Zmn if and only if gcd(m,n) = 1. So Z9×Z5
∼= Z45

and Z3×Z3×Z5
∼= Z15×Z3. I think this satisfies the desired result, as long as we consider Z45

∼= Z45×Z1.
The idea of the proof is to use the combination rule to combine products of cyclic groups of relatively

prime orders into a single group. I’m not going to prove this now, but it’s a nice result to know.

JG Exercise 11.15

How many abelian groups (up to isomorphism) are there of order 6? Of order 15? Of order 42? Or order pq,
where p and q are distinct primes? Of order prq, where p, q, and r are distinct primes? Is there a way to
generalize this?

Recall the combination rule: Za × Zb
∼= Zab if and only if gcd(a, b) = 1.

The only possible abelian group of order 6 is Z2 × Z3
∼= Z6.

The only possible abelian groups of order 15 is Z3 × Z5
∼= Z15.

The only possible abelian groups of order 42 is Z2 × Z3 × Z7
∼= Z42.

The only possible abelian groups of order pq, where p and q are distinct primes is Zp × Zq
∼= Zpq.

The only possible abelian groups of order pqr, where p, q, r are distinct primes is Zp×Zq×Zr
∼= Zpqr.

One possible generalization is that for a abelian group with order that has a prime factorization where
the power of each prime is at most 1, then there is only one abelian group of that order. Furthermore,
for a group of this type, if m divides the order of the group, there is a subgroup of that order.

JG Exercise 11.20

Verify the corollary to the Fundamental Theorem of Finite Abelian Groups in the case that the group has order
1080 and the divisor is 180.

The corollary is (JG p. 217): if m divides the order of a finite Abelian group G, then G has a subgroup
of order m.

Here, 180 divides 1080, so according to this corollary, an abelian group of order 1080 has a subgroup of
order 180. We can verify this via the Fundamental Theorem of Finite Abelian Groups, which states that
an abelian group of order 1080 must be isomorphic to one of the following groups (note that 1080 = 23·33·5
and 180 = 22 · 32 · 5):

• Z2 × Z2 × Z2 × Z3 × Z3 × Z3 × Z5. This has a subgroup of order 180: Z2 × Z2 × Z3 × Z3 × Z5.
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• Z4 × Z2 × Z3 × Z3 × Z3 × Z5. This has a subgroup of order 180: Z4 × Z3 × Z3 × Z5.

• Z8 × Z3 × Z3 × Z3 × Z5. Let ⟨2⟩ denote the subgroup of order 4 of Z8. Then this group has a
subgroup of order 180: ⟨2⟩ × Z3 × Z3 × Z5.

• Z2 × Z2 × Z2 × Z9 × Z3 × Z5. This has a subgroup of order 180: Z2 × Z2 × Z9 × Z5.

• Z4 × Z2 × Z9 × Z3 × Z5. This has a subgroup of order 180: Z4 × Z9 × Z5.

• Z8 × Z9 × Z3 × Z5. Let ⟨2⟩ denote the subgroup of order 4 of Z8. This has a subgroup of order
180: ⟨2⟩ × Z9 × Z5.

• Z2 × Z2 × Z2 × Z27 × Z5. Let ⟨3⟩ denote the subgroup of order 9 of Z27. Then this group has a
subgroup of order 180: Z2 × Z2 × ⟨3⟩ × Z5.

• Z4×Z2×Z27×Z5. Let ⟨3⟩ denote the subgroup of order 9 of Z27. Then this group has a subgroup
of order 180: Z4 × ⟨3⟩ × Z5.

• Z8 ×Z27 ×Z5. Let ⟨2⟩ denote the subgroup of order 4 of Z8. Let ⟨3⟩ denote the subgroup of order
9 of Z27. Then this group has a subgroup of order 180: ⟨2⟩ × ⟨3⟩ × Z5.

JG Exercise 11.26

The set G = {1, 7, 17, 23, 49, 55, 65, 71} is a group under multiplication modulo 96. Write G as an external and
an internal direct product of cyclic groups.

Below is a table of the orders of each element:

g ∈ G |g|
1 1

7 4

17 2

23 4

49 2

55 4

65 2

71 4

(153)

So, there are only elements of order 1, 2, and 4. An abelian group of order 8 must be isomorphic to one
of these three groups:

• Z2 × Z2 × Z2. This group has no elements of order 4.

• Z4 × Z2. This has elements of order 1, 2, and 4, e.g., (0,0), (2,1), and (1,0), respectively.

• Z8. This group has an element of order 8, i.e., (1,0).

So G ∼= Z4 × Z2.



83

JG Exercise 11.30

Suppose that G is an abelian group of order 16, and in computing the orders of its elements, you come across an
element of order 8 and two elements of order 2. Explain why no further computations are needed to determine
the isomorphism class of G.

Let G be a finite abelian group of order 16, which has an element of order 8 and two elements of order
2. There are only four groups it could be isomorphic to:

• Z2 × Z2 × Z2 × Z2. This group has no elements of order 8.

• Z4 × Z2 × Z2. This group has no elements order 8.

• Z8 × Z2. This group has an element of order 8, i.e., (1,0), and two elements of order 2, i.e., (0,1)
and (4,0).

• Z16. This group has an element of order 8, i.e., (2), but only one element of order 2, i.e., (8).

Therefore, G must be isomorphic to Z8 × Z2.

JG Exercise 11.33

Without using Lagrange’s theorem, show that an abelian group of odd order cannot have an element of even
order.

Let G be a finite abelian group of odd order. We will show that G cannot have an element of even
order. First, let’s prove the following useful result:

(i) Claim: Let g ∈ Zpn , where p is prime. Then |g| divides pn.
Proof: Let g ∈ Zpn , where p is prime. Let ⟨x⟩ = Zpn , so g = xa. Then we have |g| = |xa| =
pn/ gcd(pn, a) (cf D&F Proposition 2.5). We can note that for any value of a, gcd(pn, a) must be
equal to a power of p, i.e., gcd(pn, a) = pk, where 0 ≤ k ≤ n. So, |xa| = pn−k. Then |g| = pn−k,
and therefore |g| divides pn.

Now back to the problem at hand. According to the Fundamental Theorem of Finite Abelian groups, G
is isomorphic to a group of the form:

G ∼= Zp
n1
1

× · · · × Zp
nk
k

(154)

where pi’s are not necessarily distinct primes, but since |G| is odd, then the pi’s must be odd primes.
Pick an arbitrary element a = (g1, ..., gk) ∈ G. Since each gi is an element of a group of order a prime
power, then according to (i), |gi| must divide pni

i . So, since pni
i is odd, therefore |gi| must also be odd.

Now, |a| = lcm(|g1|, ..., |gk|), and the least common multiple of a set of odd numbers must itself be odd.
Since a was an arbitrary elements of G, we can therefore conclude that all elements of G have odd order.

XXIII. SEMIDIRECT PRODUCTS

D&F Exercise 5.5.1

Let H and K be groups, let φ be a homomorphism from K into Aut(H), and identify H and K as subgroups of
G = H ⋊φ K. Prove that CK(H) = kerφ.

Let G = H ⋊φ K, where φ : K → Aut(H). We will show that CK(H) = kerφ. To do this,
we will show that the definition of CK(H), after a bit of massaging, matching the definition of kerφ.
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We use the definitions H̃ = {(h, 1) ∈ G|h ∈ H} ∼= H and K̃ = {(1, k) ∈ G|k ∈ K} ∼= K. The
desired centralizer is CK(H) = {(1, k) ∈ K̃|(1, k)(h, 1)(1, k)−1 = (h, 1),∀(h, 1) ∈ H̃}. Here we can note
(1, k)(h, 1)(1, k)−1 = (φ(k)(h), k)(1, k−1) = (φ(k)(h), 1), so

CK(H) = {(1, k) ∈ K̃|(φ(k)(h), 1) = (h, 1),∀(h, 1) ∈ H̃} (155)

This is the same as the definition of kerφ = {(1, k) ∈ K̃|(φ(k)(h), 1) = (h, 1), ∀(h, 1) ∈ H̃}. So, CK(H) =
kerφ.

D&F Exercise 5.5.2

Let H and K be groups, let φ be a homomorphism from K into Aut(H), and identify H and K as subgroups of
G = H ⋊φ K. Prove that CH(K) = NH(K).

Let G = H⋊φK, where φ : K → Aut(H). We will show that CH(K) = NH(K) by showing that, after

some massaging, their definitions are equivalent. We use the definitions H̃ = {(h, 1) ∈ G|h ∈ H} ∼= H
and K̃ = {(1, k) ∈ G|k ∈ K} ∼= K. To begin, note that CH(K) = {(h, 1) ∈ G|(h, 1)(1, k)(h, 1)−1 =
(1, k),∀(1, k) ∈ K̃}, and we can simplify (h, 1)(1, k)(h, 1)−1 = (h, k)(h−1, 1) = (hφ(k)(h−1), k).
So, this means that (h, 1) ∈ CH(K) if and only if hφ(k)(h−1) = 1 for all k ∈ K. Likewise,
we have NH(K) = {(h, 1) ∈ G|(h, 1)(1, k)(h, 1)−1 ∈ K̃,∀(1, k) ∈ K̃}. Noting the simplification
(h, 1)(1, k)(h, 1)−1 = (hφ(k)(h−1), k), the only way this can be an element of K̃ is if hφ(k)(h−1) = 1
for all k ∈ K. Therefore, the requirements for an element of G to be in CH(K) and NH(K) are the same,
so CH(K) = NH(K).
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