Neutrino Oscillations

Moral: Just because a calculation achieves the correct answer, that does not necessarily serve
as evidence that its methods or assumptions are correct.

The Particle Data Group (PDG) produces a giant tome, amassing the important
measurements and results in particle physics. It also contains review articles, which are
supposed to summarize the state-of-the-art theoretical aspects of a subfield of research. Its
section on Neutrino Masses, Mixing, and Oscillations has a typical derivation of neutrino
flavor mixing in vacuum that is presented to most graduate students in physics. In
particular, the PDG derivation assumes that the neutrino mass eigenstates (1) all have
equal momenta, and (2) all travel the same distance over the same amount of time.
These assumptions are often stated without clear justification. In fact, we’ll see they're
unjustified!

First, some background information. Neutrinos used in experiments are produced
in weak processes, where a source particle (P) decays, producing a neutrino v along
with one or many other particles (call the set of these particles X): P — v, + X. The
neutrino produced in such a process will be of one of three flavors (denoted by the index
¢ = e, u, 7): electron type (v.), muon type (v,), or tau type (v,), and which type depends
on the details of the process. These three v, are called flavor eigenstates. Now for
the weird part: each flavor eigenstate is a linear superposition of three mass eigenstates
vy, v, and r3. These mass eigenstates are aptly named, as they all have well-defined
masses. Neutrino masses are quite small compared to every other mass scale, so they
will be ultrarelativistic in nearly all experimental setups. These mass eigenstates then
propagate through space as time, and are detected a certain distance away on the other
end of the experiment in the process D + vy — (stuff that’s detected), where D is the
detector particle, and the stuff that’s detected depends on the flavor /. This problem asks
you to calculate the probability that a neutrino of flavor ¢ will be produced at one end
of the experiment and will be detected as flavor ¢’ at the other end. We’ll get the same
neutrino oscillation formula as the one used by experiments, but the way we calculate it
should shouldn’t include any theoretical funny business.

(a) We'll begin by replicating the PDG calculation. This method will use a theoretical
widget that represents a single neutrino at a certain point in spacetime: |v(¢,x)).
We're only going to consider one dimension of space, which we will take to be the
ray between where the neutrino is produced and where it is detected.

First, the fact that a flavor eigenstate vy is a linear superposition of mass eigenstates
is represented as:
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Second, this single-particle quantum state is translated through spacetime in the
usual way for a free particle:

e =P |y (0,0)) = [vs(t, o)) 2)

where H and P are the Hamiltonian and momentum operators, respectively, and
a and [ symbolize indices indicating either flavor eigenstates or mass eigenstates.
However, note that the action of operators H and P are only defined on the mass
eigenstates, so:

Hlvi(t,2)) = E;|wi(t,0)),  Plu(t,x)) = pilwilt,z) (3)

where E; and p; are the energy and momentum of the mass eigenstate i. Finally,
the inner products are defined as:

(Va(t, 2)|vs(t, 2)) = dap (4)

where o and [ are indices that can either indicate a flavor eigenstate or mass
eigenstate label. Note that the above inner product is only defined at the same
position in spacetime, so if you want to compare states that are not in the same
position in spacetime, you’ll need to translate using Eq. (2).

Consider a source particle P at the origin of spacetime (¢, z) = (0,0). It then decays,
producing a neutrino vy, which in turn can be expressed as a linear superposition
of mass eigenstates:

Then the mass eigenstates travel from one end of the experiment to the other, a
distance L away. The probability that a neutrino of flavor ¢’ is detected at spacetime
point (7, L), where T is the transit time, is:

Pyyosuy = (e (T, L)|1(0,0)) " (6)

Since the neutrinos are ultrarelativistic, we can make the following three approxi-
mations:

(i) The transit time and the distance traveled are extremely similar in value T ~
L.

(i) Momenta of the mass eigenstates are extremely similar in value p; >~ p; = p.

(iii) The energy of the mass eigenstates can be approximated by
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where m; is the mass of the mass eigenstate v;.

Given this setup, what is the transition probability P,,,,,, in terms of L, m;, and
p?



(b)

Do the three approximations in part (a) seem peculiar? If the neutrinos are pro-
duced at the same time, wouldn’t they have different transit times, reaching the
detector at slightly different times? Different mass eigenstates have different masses,
so wouldn’t they have different momenta? The PDG and other textbooks with this
derivation do not fully explain why these assumptions are made!

Calculate the on-shell energy and momenta of all particles participating in the
neutrino production. Let the source particle has mass M and the invariant mass
of the set of particles produced along with the neutrino to be Mx. Find a the
perturbative expansion in powers of m; for the neutrino momentum, energy, and
transit time. For simplicity, assume the source particle is at rest. Express yours
answer in terms of M, My, and m;. Are the three approximations in part (a)
correct?

Calculate the neutrino oscillation probability P, ., again, but this time assume
the neutrinos are produced at the same time but reach the detector at slightly
different times, and use the on-shell calculations you did in part (b), with self-
consistent perturbative expansion in powers of m;. Express your answer in terms

of M, Mx, m;, and L.

Now the punch to the gut: you should have found that the neutrino oscillation
phases in parts (a) and (c) differ by a factor of 2. Even though the approximations
made in part (a) seemed plucked from the sky, and the approximations leading
to part (c) seemed more reasonable (since they’re based on energy and momentum
conservation and basic kinematics), the answer to part (a) is actually the oscillation
equation that is universally excepted as correct. What’s going on here?

T just like to Brvgw wwbat in hell is happening, thae’s alil Id like to know whar
in bell & happening! Do you know what in bell is bappening?”

Let’s make an attempt to resolve this paradox. Just as a shot in the dark, maybe
you think that energy and momentum conservation is a safe thing to assume, but
you don’t think that it’s safe to assume that neutrinos constructively interfere at
the detector if they arrive at slightly different times. Calculate the oscillation
probability P, ., again, but assuming that all a neutrinos have the same transit
time T; = T ~ L. You should find that your answer results in the same answer at
part (a). Does this actually resolve the paradox?



(e) We have two expressions for the neutrino oscillation probability, differing by a
factor of 2 in the phase. Which one is right? It’s not totally clear, given only
the ingredients in this problem so far. There has been much ink spilled on this
topic since neutrino oscillations were first discussed by Pontecorvo in the 1950’s,
but usually the conclusion in the literature is in favor of the answer to part (a).
These papers often invoke the concept of a “neutrino wave packet” for each mass
eigenstate, which spread away from each other on their journey to the detector
(since they have different masses). However, even though this picture has different
neutrino transit times, this wave packet approach does not result in the oscillation
phase in part (c), and instead gives the same answer as part (a), which is usually
explained with the idea of “smearing.” But so many new ingredients! And where do
neutrino wave packets come from anyways? Shouldn’t one be able to derive all of
this from first principles in quantum mechanics? Is there a semi-classical approach
that can be extracted from this more general method that we can use to resolve
this paradox once and for all?

The resolution is that the flavor eigenstate v, is not actually a particle: it is not
an irreducible representation of the Lorentz group, it does not have a mass, it does
not have a position in spacetime. The object |v,(t,x)) makes zero sense; it’s an
artifact of cultural baggage — a bookkeeping device to keep track of what linear
superposition of mass eigenstates you need to consider. So, the error, the reason
for all this confusion, was the very first step. The calculations in parts (a), (c¢), and
(d) cannot be trusted, even if one of them may give the right answer. How do we
fix this up?

You fix it up by doing the calculation for B,,_,,, from scratch in quantum field the-
ory, which is designed to handle these question about spacetime. These calculation
are beyond the scope of this current problem. See, for example, this paper. But
after doing the calculation, you can extract what the semi-classical assumptions
should be:

(i) All particles travel in straight lines in spacetime.

(ii) Energy and momentum are conserved at the source’s decay vertex, i.e., pls =
Py + pl', where p&, p, and p!' are the on-shell 4-momenta of the source, X
state, and neutrino, respectively.

(iii) Different neutrino mass eigenstates are emitted from the source particle at dif-
ferent points in spacetime z', but are detected at the same spacetime location
zlf.

(iv) The total oscillation phase for diagram includes contributions from the phase
of the source, the phase of the X state, and the phase of the neutrino:

—ips - T; + ipx - x; —ip; - (xp — ;) (8)
(Hint: can you simplify this phase using energy and momentum conservation?)

(v) The 4-momentum of the neutrino is the following:

o= (VE + B2 — m2, B2 —m? + va) (9)

where v is the velocity of the source in the lab frame, and F is the energy of
the neutrino in the CM frame of the source, as if the neutrinos were massless,
ie., BE=(M?—- M%)/2M.




To illustrate why assumption (iii) is the case, consider Fig. 1. In quantum mechan-
ics, you have to sum over variables that you don’t measure. So, since you don’t
know when the source decayed, you have to sum over it at the amplitude level.

Using this picture, calculate again P,,,,,. You should get the same answer as part
(a). Should you trust this result?

~

Figure 1: A cartoon of how neutrinos v and vy, where mo > m;, are emitted at different
times so they reach the detector (yellow dot) at the same point in spacetime. Here, the
horizontal direction is space, and the vertical direction is time.



