This document uses the setup for the calculation done in the Appendix in our paper
1711.07491, cleaning it up a bit, and keeping the effect of recoil through the end, in hopes
of deriving the neutrino oscillation formula directly from QFT.

Ingredients

The following enumerates the ingredients that go into the calculation:

(1) The source. The source particle that produces the neutrino needs to be localized
enough in space so the baseline L of the experiment can be well approximated, but
not too localized where the momentum spread of the source becomes significant
when calculating quantum amplitudes. This is a semi-classical limit. The following
details of how such a state can be constructed. Let the initial state of the source
particle have a Gaussian wave function, centered at the origin, with velocity v:
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This is what we’ll use as the initial state of the source’s wavefunction. Here, M is the

mass of the source particle, d is the number of spatial dimensions, v = 1/y/1 — v2,
and NR indicates a non-relativistic state with momentum state normalizations:
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The conjugate representation of Eq. (2) is:
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This wavefunction will need to be evolved in time in the calculation, but we’ll
choose to make a heavy-particle approximation, which turns off the free diffusion
of the source’s wavefunction with time. Under free time evolution, the relativistic

Hamiltonian is H = \/ M2 + P2:
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where P |p)yg = P|P)xg. So far, this is general for a Gaussian wavefunction.
Now we can make experimentally-relevant approximations, using a technique from
HQET. Take the argument of the exponent of the integrand, let p = yMv +k, and
expand in powers of k:

—it\/ M2 + p2 — Az*(p — yMv)* +ip - x (8)
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The neglected higher-order terms are suppressed by terms that scale like ¢t /((M Az)"Ax),

where n is some integer greater than zero. This is because the e 2%°¥* term sup-
presses the large-k region, so k ~ 1/Ax. Ignoring these terms is the approximation
that the spatial uncertainly of the source’s wave function is much larger than its
Compton wavelength for the duration of the experiment. This removes the free-
particle diffusion of the source.

Performing the Gaussian integral over k:
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We'll use this representation of the wave function at time ¢ in the calculation.

Lastly, the lifetime of the source can be taken into account by including —I't in
the exponent of the source’s wavefunction. However, the following calculation will
assume [' = 0.

The neutrino. Neutrinos are fermions, but this calculation will treat them like
scalars. The full interaction probability between source and detector does depend
on the spin of the propagating particle between them. However, since we’re only
interested in the neutrino oscillation probability, only the location of the neutrino’s
pole matters, and its spin indices have no effect on the oscillation behavior. The
reason for this is that the location of the pole for a propagating fermionic degree
of freedom is the same as that of a scalar’s with the same mass. To see this, let
Gs(p) be a scalar Green’s function with pole at p> = m?, then the fermionic Green’s
function for a particle with the same mass is Gp(p) = (iy - 9 + m)Gg(p), which
therefore must also have a pole at p? = m?2.

The rotating wave approximation is used to represent the neutrino in the Hamil-
tonian. To do this, instead of the full free quantum field ¢,(x) (where the index a
stands for the eigenstate with mass m,), one separates it into pieces with positive
and negative phases, ¢,(z) = ¢g+) + (bg_), where
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where E% = |/p? 4+ m2, and a{l), is the annihilation (creation) operator for a neu-
trino state with momentum p and mass m,, with the following commutation rela-
tions for bosons: [axq,af, ] = (27)0%(k — p)daa. The rotating wave approxima-
tion is that ¢{) and ¢{~) appear separately in the Hamiltonian, instead of only the

linear combination ¢, = ¢ + ¢{=).

There are multiple neutrino species, each with mass m,. In a given weak interaction,
a particular superposition of neutrino states are produced ¥, U;,¢'t), where U},
are elements a unitary matrix, so Y., U, U = 6py, and the index ¢ refers to the
lepton flavor of the production process. Likewise the weak process of the detection



absorbs a particular linear combination of neutrino states }, Ug/agbff). Because the
neutrinos are internal particles in oscillation experiments, the contributions from
different mass species need to be summed at the amplitude level. If any decoherence
occurs, this must be the outcome of the calculation, e.g., when the source has a
non-negligible life time, as we showed in 1711.07491.

The production process. A single source particle with mass M decays to a
neutrino with mass m, and a collection of other particles X, with invariant mass
M. This process is symbolized as S — X +v. It’s typical in semileptonic processes
to factorize the operator that transitions between the initial S state and the final
X + v state between the operator that gives rise to neutrino production and the
non-perturbative operator Og_,x that transitions between S and X, where the
interaction Hamiltonian for production is:

Viroa(t) = [ @' Y Up0(0(t,%) Osoox (%) + he. (14)

Here, Og_x(t,x) = ™= Px0g_ (0,0)e P> and the only non-zero matrix
elements of the local operator are

(X, px| Osx(t,x)[S, ps) = Ex—Eslt=ilex=ps)x p(X G popy) (15)

where | X, px) and |S, pg) are the states with well-defined momentum (the labels
X and S represent all the other information about the state, e.g., its spin, invariant
mass, angular distributions, etc.), and F' is a form factor, i.e., F(X,S;ps,pPx) =
(X, px| Os-x(0,0) |S, ps), which depends on all the details of the S — X transi-

tion. Also, Ex = \/M% + p% and Es = /M? + p?.
We’ll make the following simplification: the differences in the neutrino masses are

small enough that the form factor F' is approximately the same for all neutrino
species. With this approximation, we’ll let

9s = F(X, S;ps, px) (16)
be a constant for all neutrino mass eigenstates for a single weak transition.

The detection process. The neutrino is detected by a heavy two-state system
with energy level splitting A, located at spatial position L. Here, the neutrino is
absorbed, and the detector transitions from the ground state |G) to the excited
state |E). The detection Hamiltonian is:

‘/det(t) =4p Z Uaf’gbg_) (ta L) eiAt |E> <G| + h.c (17)

where gp is a coupling constant, taken to be the same value for all neutrino species.

There are two additional ingredients that make this detector model more realis-
tic. First, we should set up an entire collection of 2-state systems, all located at
spatial position L, each with a slightly different energy splitting A;. The proba-
bility density of these energy splittings is p(A;). These states have inner products
(Gj|Gy) = ;1 and (E;|E)) = d;5. Each of these detectors are distinguishable, so
the total transition probability involves an incoherent sum over these these detector
subsystems.



Second, the detector also measures the time of the neutrino detection. To account
for this, all the detectors will be on only during the time interval |7, 7 + T, where
T corresponds to the timing resolution of the detector. We will be taking 7" to be
large enough to ensure energy conservation at the detector, i.e., A;7 > 1 which is
a very good approximation of current particle-physics detector technology

(5) The Hamiltonian. The full interaction Hamiltonian is

V(t) = Viwoa(t) + Vae(t) (18)
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(6) The initial state. We factorize the Hilbert space between the source, a part of

the detector system, and the neutrino. The initial state of the system is:
1) = [¢(t = 0)) @ |G;) ®10) (20)

Here, the source begins at ¢ = 0, the detector subsystem j is in the ground state,
and there is no neutrino.

(7) The final state. The final state is

1f) = Ipx) ® |Ej) ®10), (21)

Here, the X state has momentum px, the detector subsystem j is in the excited
state, and there is no neutrino.

(8) The transition amplitude. Using time-dependent perturbation theory, the lowest
order non-zero amplitude between the initial and final states is

Ao (px,A;) = (—i)? /TT+T dt; /Otl dta (f| V(t1)V (t2) |7) (22)

(9) The sum over final states. The total probability for the process can be calculated
by summing incoherently the different final states of the X state and the detector
system:

Pose = / EZ;I:)); /dAj p(4;) ’AE—M’(anAj)‘Q (23)

The rest of this document is the evaluation of Eqgs. (22) and (23). There are no
more choices left, the rest is math. Note that nowhere above was energy or momentum
conservation mentioned, and not even that the neutrino goes from the source to the
detector. These are conclusions of the following calculation, not their inputs.



The Amplitude

Starting with the transition amplitude:
T+T t1
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Next we’ll evaluate the two matrix elements present in the integrand. For the matrix
element for the S — X transition:
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Where we used Eq. (4), (15), and (16). Letting ps = yYMv+k, using the approximation in
Eq. (9) to approximate the argument of the exponent, and doing the remaining Gaussian
integral over k:
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Second, evaluating the remaining matrix element for the neutrino subspace using Eqs. (12)
and (13):
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Using the expressions in Eqgs. (28) and (31) in Eq. (25), and doing the sum over b, we
have:
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Doing the integral over x:
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Let d = 3, L = Lz, and express the p integral in terms of spherical coordinates, where
6 = 0 corresponds to the 2 axis. Let x = cosf. Isolating the just angular integrals,

/1 dr 2m d¢ efip\/ 1—a2 (vg cos p+vy sin ¢)ta—ipvzta+ipLa (34)
-1 0
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One can use the following approximation:
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which is accurate if Az is taken to be large (to approximate the integral), but always
remaining much smaller than L (to approximate the result of integration), which is the
case in experiments. The same approximation applies if cos ¢ is replaced with sin ¢ in the
integrand. The + sign in the approximation in Eq. (36) depends on the sign of p5 —yMuv,.
One can evaluate the angular integrals keeping track of the sign of p5 —~vyMuwv,, but I claim
that the situation when p5 — yMv, > 0 is killed in the upcoming energy integrals — it
corresponds with a negative energy configuration, since this is the solution where the
neutrino propagates along the 2 axis, but away from the detector, not towards it. This is
discussed in a bit more detail in 1711.07491. For now, we’ll focus on when p5 —vyMwv, < 0,
which corresponds with the neutrino going toward the detector (cosf = 0). After using
this approximation, the amplitude becomes:

p?dp 1
(2m)3 QEJ‘;
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where £ = /p? + m2. Changing integration variables from p to Ej:
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where p, = /E2 — m2. Next we'll deform the integrand slightly in the large (positive) ¢,
region by adding an —ety to the argument of the exponent, where € is an infinitesimally
small positive real number:

3/2 . T+T t1 o0 dEa
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Doing the t, integral:

| Sp T oo dE®
Aise(Px,Aj) = —igpgs <2V 27TA$) ZUzaUaE’/T dt1/m ﬁ (40)
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The evaluation of the energy integral reveals the causal structure of the amplitude.
Assuming analyticity in £, the full integrand has no poles, but the two individual terms
do, and these poles are the dominant contribution to the individual terms in the integral.
Let’s look at the first term. If t{ — L > 0, then the first term is basically the same as in
1711.07491, were you have to deform the contour into the lower-half plane, picking up the
contribution from the pole. This corresponds to the dominant contribution being when
the detector is on within the neutrino’s light cone. If instead ¢; — L < 0, you deform
the contour to the upper-half plane where there is no pole, and the this first term is
suppressed. Regarding the second term, it can pick up the contribution from the pole if
L —v.t; <0, and it would cancel the pole in the first term when also ¢t; — L > 0. Taking
both terms together, the only non-trivial contribution from the above energy integral is
from the pole, and when both the conditions t; — L > 0 and L — v,t; > 0 are satisfied.
These are the same results we found in 1711.07491, but when v = 0. The value of E} at
the location of the pole, call it ¢, satisfies the equation:

Ex + B2 = Mfy—v- (B2 = m2z + px ) =0 (41)

where, again, Ex = /|px|? + M%. T won’t solve this equation just yet, but instead just
note that the root of it is located at E¢.
Now performing the energy integral via the residue methods just mentioned:

. 3/2 . T+T 1
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Doing the t; integral:
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And cleaning it up a bit:
)(a,—pe) SIn[(A; — E)T/2]
A; — E?
2

eiL\/ (Ef)QfmngxQ( (Eg)27m32+pr'va) (44)

; / 3/2 * i(T
AZ_%/(pr A]) = Zngg_JS (2 27TA1') Z UgaUagle (r+T/2

™

That’s it for the amplitude. No assumptions yet have been made about neutrinos being
ultrarelativistic, and nowhere have the words “on-shell” been mentioned.

The Probability

Next we square the amplitude, and do the four integrals over the final states of A; and
Px, as in Eq. (23), in order to get the probability:

43 2
Py :/ p); /CZAJ p(A]) ‘AE%E’(anA]‘)‘

) (45)
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Let’s look first at the integral over A;. We immediately run into an issue. Squaring
the individual sinc function yields the diagonal terms:
sin[(A; — EOT/2)[*
A; — E¢

~ gTé(Aj —E%)  as AT > o0 (46)

but the cross terms would behave like:
sinf(A; — B2)T/2] sinl(A, — E)T/2)
(A; — E2) (A; — EL)

~ 0 as A;T — oo (47)

if £% and E? are not equal, i.e., the neutrino species a and b have different energies. The
contributions to the amplitude from different neutrino species do not interfere, because
the detector was able to resolve their individual energies. Therefore, no oscillations occur.
This wasn’t an issue in the main part of our paper, because all the neutrinos had the
same energy, by construction, so these sinc functions perfectly overlapped. However now
when including recoil, the non-overlapping sinc functions become a relevant detail. This
result is not surprising, since we’d expect such a decoherence effect if the neutrinos had
very different masses. The first thing to explore is the possibility of giving the detector an
absorption spectrum, which one can model with a Lorentzian with width I'p by replacing
A; = Aj+1il'p/2, where A; > I'p. The assumptions being made are that I'pT > 1,
and |E* — Ef| is smaller than all other energies scales in the problem, so I'p > |E, — E,|.
When I'p is nonzero, then Eq. (47) becomes:

sin(A; +ilp/2 — EY)T/2] sin[(A; — iTp/2 — E))T/2] el'pT/2 (43)
(Aj+il'p/2 — EY) (A; —il'p/2 — EY) (A;j— B2+ T /4

as I'pT — oo and A;T" — oco. Here, E, is some value of energy that is very close to E¢
and E?, but at this point, I'm not quoting its exact value, since it does not effect the
argument of the exponential, where all the action is. Pressing on, after factoring out an
overall phase, the probability becomes:

2

2 2 43 _
Pew = 50 (2varaa) [ Z05 585, E)

Z U; U,y e—iﬂ_—Ef+ip$L—AzQ(p$2+p x—yMv)?
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a

w2 L2 (2m)3
(49)
where p? = /(E®)? —m2, 7 =7+ T/2, and
AL E A p(A o
(A, Ey) = /d ; ; = 50

What remains is the px integral.

Stationary Source

For now, I'll set v = 0, and do the calculation again later for nonzero v. Let’s change
variables from a Cartesian coordinate system for px to one in spherical coordinates:

px = ksinfcos¢ (51)
p% = ksinfsing (52)
px = kcosf (53)



Only the Gaussian in the integrand of Eq. (49) depends on the angular variables, since
E, and p, only depend only on k%. The terms in the squared amplitude will have the
following Gaussian arguments in the exponential:

~Aa? (022 + px)’ — Ax® (002 + px )’
= AL (py)? — 2822 (p)? — Ad® (p + i)t — A (P pk) (54)
= —2Ax*k*sin® § — Ax? (p* + k cos 9)2 — Az? (pi + k cos 9)2 (55)
= —Az? (2k;2 sin?@ + (p?)* 4 (p2)? + 2k cos? 0 + 2(p® + p°)k cos 6) (56)
= —A® (2K + () + (02)* + 2008 + p)k cos 6) (57)

Letting x = cosf, and isolating the angular integrals:

/1 " 27 " efAﬁ(2k2+(p‘$)2+(1°3)2+2(p$+p2)kx) (58)
-1 0
— 9007 (2K ()2 +(2)?) /1 do e~ 287 Wi+pl)ke (59)
—1
2AZ2 (pa-+pb )k
— 27re*Ax2(2k2+(p‘:)2+(p’l)2) € S +0 <1> (60)
2022(p% + ph)k Azt

2 2 2 b)?
o e~ Ae?(k=p$)*—Aa? (k—pl)

T AZ2(pr+ )k (61)

where again p¢ = /(F%)? — m2. The above integral approximation is just the statement
that the X state goes in the —Z direction when v = 0. The probability is then:

Pg_%/ = giig 2 V 27TA..'E / kdk P Js ) (62)

e 1T (B —EL)+iL(pt —pl)—Ax? (k—p¢)? — Ax? (k—p})?

X U*aUag/UgbU*/
az,z; ! " (p% +1ph)

Now, since E? is defined as the root of Eq. (41) (it is not the on-shell energy of the
neutrino!), it the same for all neutrino species:

pe P gy (63)

*
de

= M- k*+ M} (64)

Hh

So, here when v = 0, the 7 dependence in the oscillation probability drops out:

Py — ggfg (2v2rAc) / kdk 5(A;, E.) (65)

eIl (Pt —p)— AJEQ(k—pif)Q—AﬂEQ(k—pii)2

X U*aUag/UgbU*/
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Here,




The remaining integral over k£ will be dominated by the saddle point. We have two
Gaussians. Let’s simplify one at a time, then combine them into a single Gaussian. For
one of the Gaussians, we’ll define k¢ to be the value of k such that k — p¢ = 0, which can
be solved analytically:

o _ VOT M) = ) (M = M)? = )
o 2M

(It’s interesting to note that this is the same momentum one gets from solving the two-
body on-shell kinematics for a stationary source.) Now, one can expand the argument in
the exponential of the Gaussian to second order about k& = k-

(69)

2M?Ax 2
—A:cQ(k—pfi)z = - <M2—|—M§<—m2> (’f—ki‘)2+“' (70)
2M2Az " m?2
- <M2+M)2(> (k—k*)2+O<M2> (71)

to get the leading order behavior. Here, the ultrarelativistic approximation was used, so
each Gaussian has a different saddle point, but their widths are the same, up to corrections
of order m?/M?. Using this approximation, the two Gaussians can be combined into one
by completing the square:

m> ((k = k2 + (k= K2)?) (72)

IM2Az \? 1 2
) N [t —— — —(k® b)
<M2+M§(> (k 2(k*+k*)

1 2M2Ax \*, .,
S erag) (-1 o

—Az?(k —pl)* — Ax®(k —pl)* ~ — (

For the interference terms, the saddle point is located halfway in between the two Gaus-
sians. Now, one can perform the remaining integral over k, in the limit that Ax is large
enough to approximate the integral as only having a dominant contribution in a small
neighborhood in k around (k2% + k2)/2. If so, one can make the following replacements in
the integrand of Eq. (65), using the ultra-relativistic approximation:

m2 — m}

0 — ) = M) ) (74)
k=(ka+kY) /2 2po
k 1 ,
; = —+0(m") (75)
PY A+ D2 lk=(ka+k2) /2 2
5( 2L )z(k:ki)
e \MTTX = 1+ 0((m?—mi)Az?) (76)
where
M? — M3

pp= —— (77)

2M

is equal to the on-shell energy of the neutrinos, if they were massless. Using these
approximations in Eq. (65), we have the transition probability:

2 2 2 2 i(mg —mp) L
g (MM . imaompr
Pese = 2] 2 ( 2M? P azb: UgUat UnUppr € o (78)
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Peeling off the oscillation probability:

i(mifmg)[l

P, = Z;UZGUMU%U;}, e (79)
im2 L 2
= D UpUaw e 20 (80)

This is the standard neutrino oscillation formula used by experiments, for a stationary
source. This relied on an additional assumption that (m? — m?)Az? < 1. Crazy how
that happened.

Source with v =v2

Let’s redo the probability calculation, but now with v = vZ. This approximates what
is done in pion beam experiments. Let’s change variables from a Cartesian coordinate
system for px to one in spherical coordinates:

px = ksinfcos¢ (81)
p% = ksinfsing (82)
px = kcosf (83)

Now, the Gaussian in the integrand of Eq. (49) is not the only part of the integrand
that depends on the angular variables, since F, and p, now depend on @, as defined in
Eq. (41). We're going to treat the Gaussians as the dominant contribution to the integral,
since deviations from their center correspond with The terms in the squared amplitude
will have the following Gaussian arguments in the exponential:

—Az? (p?2 + px — YMv32)® — Az? (pié +px — fvaﬁ)Q (84)
= AL (py)” — 2882 (p)? — Ad® (p + py — YMo)® — Aa® (p + pi — 7 Mv)

= —2Az%k%sin? 0 — Az? (p? + kcos§ — yMv)® — Ax? (pi + kcost — fva)Q (85)

= —A2® (2K + (p2)” + (1)) — 2Myw(pt + pb) + 2M>y*0* + 2(p + p; — 2M )k cos0)

(86)

Letting x = cosf, and isolating the angular integrals:
/ e / T 06 Flka) oD RO 0L 2 B ) +2M 2 2002 4] -2 M k) (87)
-1 0
_ QWQ—AH(2k2+(17‘i)2+(pi)2—2Mvv(p‘i+p2)+2M272v2) /1 dz f(kz) 6—2AI2(p‘i+p§—2M7v)k1(88)
-1

— A2 (2k2+(p2)2+(ph) 2 —2Myo(pi+ph)+2M25 %0

o) F(k) A" —2ut ol

1
2Az%p2 + pp — 2MAyvlk O (ﬁg)

= 2me

eS8t

= 90
Az?n(pe + py — 2Myv)k (50)
where 7 is an indicator, defined as
n = sign (pff +pb — ZMVU) (91)
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so n? = 1. The above integral approximation is just the statement that the X state goes
in the —Z direction when v is small enough, and in the +Z2 direction when v is large
enough. That is, the saddle point picks out px ~ —nkZ + O(1/Ax). The probability is
then:

2 2
_ 959D (6. /5= > - =
e—ﬁ(Ef—Ei’)+iL(p‘i—pi)—AfEQ(nk—p‘Hva)Q—AzQ(nk—p’iﬂMv)Q
X ZUZaUaZ/UébUl;kZ’
3 n(pg +pt — 2My)

Still p¢ = /(F%)? — m2, but now E? is defined as the root of Eq. (41):

0 — EX+Ef—M/7—v< (Eg)2—mg—nk) (93)

_ \/k2+M§(+Ef—M/fy—v< (Eg)2—mg—nk) (94)

At this point, one can analytically solve the above equation for F¢, in terms of k. However,
it’s a bit cumbersome. Importantly, the value of E2 no longer is independent of m,, so
the 7 dependence in the oscillation probability does not drop out, like it did in the v =0

case. It’s going to be more convenient to change variables from E?¢ to p? = \/(E%)? — m2
in the above equation:
0 = VR MR+ () o+ m2 = My — v () — k) (95)

The remaining integral over k will be dominated by the saddle point. We have two
Gaussians. Let’s simplify one at a time, then combine them into a single Gaussian. For
one of the Gaussians, we’ll define k¢ to be the value of k such that nk — p? + yMv = 0,
where p? is the root of Eq. (95). This is not easy to solve directly. Instead, it can be
solved by writing down the correct answer:

(M + Mx)? —=m2)(M — Mx)? —m2)  yu(M? + M2 — m2)

ja = . a 96

and then verifying it is correct by plugging this value of k into 0 = (nk — p? +vMwv) ‘k—ka'
One will recognize this expression of k¢ as the magnitude of the on-shell momentum of
the X state, in the boosted frame with velocity v. Expanding the Gaussian about k¢ to
second order:

ma

2
ARk — p 4y Mu)E —Ax?g(M,MX,w(k—nk:fw( ) (o7)

M2

where ¢ is some function I'm not going to waste anymore time trying to solve for. The
point is that the saddle point is at £k = k¢, and the exact width of the Gaussian doesn’t
matter in the end, since it doesn’t change the pole structure. The two Gaussians in
Eq. (92) can be combined into one:

—Az*(nk — p* + yMv)? — Az*(nk — P+ yMwv)?
~ —Aa?g(M, My, o) ((k = nki)? + (k = nk)?) (98)

1 21
= —20a%g(M, My, v) (k= 5(k2 + K) ) = 5Aa%9(M, My, v) (K2 = &) (99)
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Now that we have a single Gaussian, the integral can be solved using the saddle point ap-
proximation. The following terms in the integrand can be approximated as the following,
in the limit that m, is very small:

2 _ 92
(E* — EY) __(mg —mi) + O(m?) (100)
k= (ko 4R /2 2po
2 2
a yimg —m
(p? =12 ==—(i29+0mﬁ (101)
ke=(ke+kb)/2 Po
k 1
= —+0(m? (102)
77(1055 + pg - 2M'7U) k=(ke+k)/2 2
AT gMMx ) (k=) 1 o ((mi — mg)sz) (103)
where pg is defined as before:
M2 - M2
So, finally doing the Gaussian integral over k:
2 .2 2 _i'y(mg—mQ) 5
Prow = 590 P Ui UaeUnlUsy e 27 (105)

7T2L2 g(Mv MX7/U) a,b

This is the main result.
Setting 7 ~ L, the probability becomes:

Reh__ 2 todpiye

Prse = pY Ut UspUnUsy e 0 (106)
7T2L2 g(M7 MX7U) a,b
where
/ Po
= — 107
b= 51—y (107)
M? — M%

= X 108
2M~(1 —v) (108)

which is exactly the momentum of the neutrino in the lab frame, if the parents particle
has a velocity v = vZ. The three-body kinematics is a result of this calculation, not an
direct input. Peeling off the oscillation probability:

i(mgfmg)L

P, = S UnUwUpUsy e % (109)

Vp—rVyr
a,b

im2 L

S UUp e 20 (110)

This is the standard neutrino oscillation formula used by experiments, for a moving
source. This relied on an additional assumption that (m? —m?)Az? < 1.
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Geometric Semi-Classical Interpretation

This semi-classical interpretation reproduces the 7 dependence in the phase in Eq. (105).
The figure below shows the addition of two amplitudes associated with neutrino propaga-
tion from the source to the detector, one with neutrino v; and one with neutrino 5. The
source has a mass M, begins at the origin in spacetime, and travels in the lab frame with
velocity v, in the direction of the detector. The source decays to two sets of particles: one
neutrino with mass m; (i = 1,2), and a set of other particles with invariant mass Mx.
The point in spacetime along the source’s worldline where the neutrino and the X are
emitted is xf' = (¢;,vt;). The neutrinos emitted then travel in a straight trajectory in
space time on their way to the detector located at z}, = (7, L) in the lab frame.

The neutrino oscillation amplitude is

Vo—Vyr

AP, =3 UpUpe (111)

where the phase for each diagram ¢; has a contribution from the source, the X state, and
the neutrino:

i =—ps-xi+px -z —pi- (rp—x;) (112)

The sign convention is that the spacetime translation phase gets a minus (plus) sign
if it’s going into (coming out of) a vertex. Because of energy-momentum conservation:
pls = ply + pf, the expression for ¢; can be simplified:

b = —pi - Tp (113)

This is not to be interpreted that all neutrinos travel the same distance in space time.
Rather, it’s a consequence of the linear combination of phases and energy-momentum
conservation. Since 7 and L are defined in the lab frame, where the source particle has
velocity v, we have to express the 4-momentum of the neutrino in the lab frame as well:

pi = (Ei,p) (114)
= <7E+7v\/E2—m?,v\/EQ—m%—Fva) (115)

Here’s the point to glean from the QFT calculation: the neutrinos that interfere have the
same energy F in the CM frame of the source. This is because the detector in calculation
is a heavy 2-state system, which measures energy. The value of E is the mean between
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the two on-shell energies of the neutrinos. This average comes about because when the
diagram interfere, they each have a saddle point centered at on-shell momentum, so
when the diagrams are combined, the saddle points combine into one, exactly halfway in
between. The resulting single saddle point usually would be a source of decoherence, but
since the neutrino masses so much lighter than all of energy scales in the problem, this
decoherence is not sizable. So, the phase in the interference terms have the form:

o1 —¢2 = —(B] — Ey)7+ (¢ —po)L (116)
= —fyv<\/E2—m%—\/EQ—m%)T—I—’V(\/Ez—m%—\/EQ_m%>[(117)
— (VB —mi = B = m3) (L - 7o) (118)

In the CM frame of the source, the value of F is

E:é(MZ_%j‘_m%thg_é\ﬁ(—m%) (119)
Expanding to order m?, we have:
=00 = M (g ) (B 70+ O (120
= V(mzp_o m3) (L —7v) (121)
where
= MM 122

is the energy (or momentum) of the neutrino in the CM frame of the source, if the
neutrino were massless. Therefore, the oscillation probability is

i’ym%(LfT'u)
pose — Z UZ*Z UMIG 2p0
A

Vo—Vyr

(123)

This reproduces the QFT oscillation probability in Eq. (105).
Now, what is the L — 7v factor doing? It changes the effective baseline. To see how
in this geometric interpretation, say the source with velocity v in the lab frame travels a
distance = before emitting the neutrino. Since the neutrino travels in a straight line:
x

T=" 4 (L) +0(m?) (124)
and so,
L—vr=(1—v)(L—x)+0O(m? (125)

The value of L — x is the effective distance that the neutrino travels from being emitted
to the detector. Therefore, the phase in Eq. (123) becomes:
2

P, = | S Uilme ™ (126)
where L = L — z is the effective baseline of the oscillation experiment, and
M? — M?
/ X
— _ 127

is the on-shell energy of the neutrino in the lab frame, if it were massless.
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